Generative AI and LLMs

Download Generative AI and LLMs PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 311142507X
Total Pages : 290 pages
Book Rating : 4.1/5 (114 download)

DOWNLOAD NOW!


Book Synopsis Generative AI and LLMs by : S. Balasubramaniam

Download or read book Generative AI and LLMs written by S. Balasubramaniam and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-09-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative artificial intelligence (GAI) and large language models (LLM) are machine learning algorithms that operate in an unsupervised or semi-supervised manner. These algorithms leverage pre-existing content, such as text, photos, audio, video, and code, to generate novel content. The primary objective is to produce authentic and novel material. In addition, there exists an absence of constraints on the quantity of novel material that they are capable of generating. New material can be generated through the utilization of Application Programming Interfaces (APIs) or natural language interfaces, such as the ChatGPT developed by Open AI and Bard developed by Google. The field of generative artificial intelligence (AI) stands out due to its unique characteristic of undergoing development and maturation in a highly transparent manner, with its progress being observed by the public at large. The current era of artificial intelligence is being influenced by the imperative to effectively utilise its capabilities in order to enhance corporate operations. Specifically, the use of large language model (LLM) capabilities, which fall under the category of Generative AI, holds the potential to redefine the limits of innovation and productivity. However, as firms strive to include new technologies, there is a potential for compromising data privacy, long-term competitiveness, and environmental sustainability. This book delves into the exploration of generative artificial intelligence (GAI) and LLM. It examines the historical and evolutionary development of generative AI models, as well as the challenges and issues that have emerged from these models and LLM. This book also discusses the necessity of generative AI-based systems and explores the various training methods that have been developed for generative AI models, including LLM pretraining, LLM fine-tuning, and reinforcement learning from human feedback. Additionally, it explores the potential use cases, applications, and ethical considerations associated with these models. This book concludes by discussing future directions in generative AI and presenting various case studies that highlight the applications of generative AI and LLM.

LLMs and Generative AI for Healthcare

Download LLMs and Generative AI for Healthcare PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098160886
Total Pages : 218 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis LLMs and Generative AI for Healthcare by : Kerrie Holley

Download or read book LLMs and Generative AI for Healthcare written by Kerrie Holley and published by "O'Reilly Media, Inc.". This book was released on 2024-08-20 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large language models (LLMs) and generative AI are rapidly changing the healthcare industry. These technologies have the potential to revolutionize healthcare by improving the efficiency, accuracy, and personalization of care. This practical book shows healthcare leaders, researchers, data scientists, and AI engineers the potential of LLMs and generative AI today and in the future, using storytelling and illustrative use cases in healthcare. Authors Kerrie Holley, former Google healthcare professionals, guide you through the transformative potential of large language models (LLMs) and generative AI in healthcare. From personalized patient care and clinical decision support to drug discovery and public health applications, this comprehensive exploration covers real-world uses and future possibilities of LLMs and generative AI in healthcare. With this book, you will: Understand the promise and challenges of LLMs in healthcare Learn the inner workings of LLMs and generative AI Explore automation of healthcare use cases for improved operations and patient care using LLMs Dive into patient experiences and clinical decision-making using generative AI Review future applications in pharmaceutical R&D, public health, and genomics Understand ethical considerations and responsible development of LLMs in healthcare "The authors illustrate generative's impact on drug development, presenting real-world examples of its ability to accelerate processes and improve outcomes across the pharmaceutical industry."--Harsh Pandey, VP, Data Analytics & Business Insights, Medidata-Dassault Kerrie Holley is a retired Google tech executive, IBM Fellow, and VP/CTO at Cisco. Holley's extensive experience includes serving as the first Technology Fellow at United Health Group (UHG), Optum, where he focused on advancing and applying AI, deep learning, and natural language processing in healthcare. Manish Mathur brings over two decades of expertise at the crossroads of healthcare and technology. A former executive at Google and Johnson & Johnson, he now serves as an independent consultant and advisor. He guides payers, providers, and life sciences companies in crafting cutting-edge healthcare solutions.

Machine Learning with PyTorch and Scikit-Learn

Download Machine Learning with PyTorch and Scikit-Learn PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801816387
Total Pages : 775 pages
Book Rating : 4.8/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with PyTorch and Scikit-Learn by : Sebastian Raschka

Download or read book Machine Learning with PyTorch and Scikit-Learn written by Sebastian Raschka and published by Packt Publishing Ltd. This book was released on 2022-02-25 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.

Generative AI and LLMs

Download Generative AI and LLMs PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3111425517
Total Pages : 366 pages
Book Rating : 4.1/5 (114 download)

DOWNLOAD NOW!


Book Synopsis Generative AI and LLMs by : S. Balasubramaniam

Download or read book Generative AI and LLMs written by S. Balasubramaniam and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-09-23 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative artificial intelligence (GAI) and large language models (LLM) are machine learning algorithms that operate in an unsupervised or semi-supervised manner. These algorithms leverage pre-existing content, such as text, photos, audio, video, and code, to generate novel content. The primary objective is to produce authentic and novel material. In addition, there exists an absence of constraints on the quantity of novel material that they are capable of generating. New material can be generated through the utilization of Application Programming Interfaces (APIs) or natural language interfaces, such as the ChatGPT developed by Open AI and Bard developed by Google. The field of generative artificial intelligence (AI) stands out due to its unique characteristic of undergoing development and maturation in a highly transparent manner, with its progress being observed by the public at large. The current era of artificial intelligence is being influenced by the imperative to effectively utilise its capabilities in order to enhance corporate operations. Specifically, the use of large language model (LLM) capabilities, which fall under the category of Generative AI, holds the potential to redefine the limits of innovation and productivity. However, as firms strive to include new technologies, there is a potential for compromising data privacy, long-term competitiveness, and environmental sustainability. This book delves into the exploration of generative artificial intelligence (GAI) and LLM. It examines the historical and evolutionary development of generative AI models, as well as the challenges and issues that have emerged from these models and LLM. This book also discusses the necessity of generative AI-based systems and explores the various training methods that have been developed for generative AI models, including LLM pretraining, LLM fine-tuning, and reinforcement learning from human feedback. Additionally, it explores the potential use cases, applications, and ethical considerations associated with these models. This book concludes by discussing future directions in generative AI and presenting various case studies that highlight the applications of generative AI and LLM.

Generative Deep Learning

Download Generative Deep Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492041890
Total Pages : 301 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Generative Deep Learning by : David Foster

Download or read book Generative Deep Learning written by David Foster and published by "O'Reilly Media, Inc.". This book was released on 2019-06-28 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN

Deep Learning with Structured Data

Download Deep Learning with Structured Data PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 163835717X
Total Pages : 262 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with Structured Data by : Mark Ryan

Download or read book Deep Learning with Structured Data written by Mark Ryan and published by Simon and Schuster. This book was released on 2020-12-08 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Summary Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts. Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Here’s a dirty secret: Half of the time in most data science projects is spent cleaning and preparing data. But there’s a better way: Deep learning techniques optimized for tabular data and relational databases deliver insights and analysis without requiring intense feature engineering. Learn the skills to unlock deep learning performance with much less data filtering, validating, and scrubbing. About the book Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Get started using a dataset based on the Toronto transit system. As you work through the book, you’ll learn how easy it is to set up tabular data for deep learning, while solving crucial production concerns like deployment and performance monitoring. What's inside When and where to use deep learning The architecture of a Keras deep learning model Training, deploying, and maintaining models Measuring performance About the reader For readers with intermediate Python and machine learning skills. About the author Mark Ryan is a Data Science Manager at Intact Insurance. He holds a Master's degree in Computer Science from the University of Toronto. Table of Contents 1 Why deep learning with structured data? 2 Introduction to the example problem and Pandas dataframes 3 Preparing the data, part 1: Exploring and cleansing the data 4 Preparing the data, part 2: Transforming the data 5 Preparing and building the model 6 Training the model and running experiments 7 More experiments with the trained model 8 Deploying the model 9 Recommended next steps

Generative AI for Cloud Solutions

Download Generative AI for Cloud Solutions PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1835080162
Total Pages : 301 pages
Book Rating : 4.8/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Generative AI for Cloud Solutions by : Paul Singh

Download or read book Generative AI for Cloud Solutions written by Paul Singh and published by Packt Publishing Ltd. This book was released on 2024-04-22 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore Generative AI, the engine behind ChatGPT, and delve into topics like LLM-infused frameworks, autonomous agents, and responsible innovation, to gain valuable insights into the future of AI Key Features Gain foundational GenAI knowledge and understand how to scale GenAI/ChatGPT in the cloud Understand advanced techniques for customizing LLMs for organizations via fine-tuning, prompt engineering, and responsible AI Peek into the future to explore emerging trends like multimodal AI and autonomous agents Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionGenerative artificial intelligence technologies and services, including ChatGPT, are transforming our work, life, and communication landscapes. To thrive in this new era, harnessing the full potential of these technologies is crucial. Generative AI for Cloud Solutions is a comprehensive guide to understanding and using Generative AI within cloud platforms. This book covers the basics of cloud computing and Generative AI/ChatGPT, addressing scaling strategies and security concerns. With its help, you’ll be able to apply responsible AI practices and other methods such as fine-tuning, RAG, autonomous agents, LLMOps, and Assistants APIs. As you progress, you’ll learn how to design and implement secure and scalable ChatGPT solutions on the cloud, while also gaining insights into the foundations of building conversational AI, such as chatbots. This process will help you customize your AI applications to suit your specific requirements. By the end of this book, you’ll have gained a solid understanding of the capabilities of Generative AI and cloud computing, empowering you to develop efficient and ethical AI solutions for a variety of applications and services.What you will learn Get started with the essentials of generative AI, LLMs, and ChatGPT, and understand how they function together Understand how we started applying NLP to concepts like transformers Grasp the process of fine-tuning and developing apps based on RAG Explore effective prompt engineering strategies Acquire insights into the app development frameworks and lifecycles of LLMs, including important aspects of LLMOps, autonomous agents, and Assistants APIs Discover how to scale and secure GenAI systems, while understanding the principles of responsible AI Who this book is for This artificial intelligence book is for aspiring cloud architects, data analysts, cloud developers, data scientists, AI researchers, technical business leaders, and technology evangelists looking to understanding the interplay between GenAI and cloud computing. Some chapters provide a broad overview of GenAI, which are suitable for readers with basic to no prior AI experience, aspiring to harness AI's potential. Other chapters delve into technical concepts that require intermediate data and AI skills. A basic understanding of a cloud ecosystem is required to get the most out of this book.

Generative AI with Python and TensorFlow 2

Download Generative AI with Python and TensorFlow 2 PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800208502
Total Pages : 489 pages
Book Rating : 4.8/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Generative AI with Python and TensorFlow 2 by : Joseph Babcock

Download or read book Generative AI with Python and TensorFlow 2 written by Joseph Babcock and published by Packt Publishing Ltd. This book was released on 2021-04-30 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fun and exciting projects to learn what artificial minds can create Key FeaturesCode examples are in TensorFlow 2, which make it easy for PyTorch users to follow alongLook inside the most famous deep generative models, from GPT to MuseGANLearn to build and adapt your own models in TensorFlow 2.xExplore exciting, cutting-edge use cases for deep generative AIBook Description Machines are excelling at creative human skills such as painting, writing, and composing music. Could you be more creative than generative AI? In this book, you’ll explore the evolution of generative models, from restricted Boltzmann machines and deep belief networks to VAEs and GANs. You’ll learn how to implement models yourself in TensorFlow and get to grips with the latest research on deep neural networks. There’s been an explosion in potential use cases for generative models. You’ll look at Open AI’s news generator, deepfakes, and training deep learning agents to navigate a simulated environment. Recreate the code that’s under the hood and uncover surprising links between text, image, and music generation. What you will learnExport the code from GitHub into Google Colab to see how everything works for yourselfCompose music using LSTM models, simple GANs, and MuseGANCreate deepfakes using facial landmarks, autoencoders, and pix2pix GANLearn how attention and transformers have changed NLPBuild several text generation pipelines based on LSTMs, BERT, and GPT-2Implement paired and unpaired style transfer with networks like StyleGANDiscover emerging applications of generative AI like folding proteins and creating videos from imagesWho this book is for This is a book for Python programmers who are keen to create and have some fun using generative models. To make the most out of this book, you should have a basic familiarity with math and statistics for machine learning.

Artificial Intelligence

Download Artificial Intelligence PDF Online Free

Author :
Publisher : HBR Insights
ISBN 13 : 9781633697898
Total Pages : 160 pages
Book Rating : 4.6/5 (978 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence by : Harvard Business Review

Download or read book Artificial Intelligence written by Harvard Business Review and published by HBR Insights. This book was released on 2019 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.

The Definitive Guide to Conversational AI with Dialogflow and Google Cloud

Download The Definitive Guide to Conversational AI with Dialogflow and Google Cloud PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 9781484270134
Total Pages : 405 pages
Book Rating : 4.2/5 (71 download)

DOWNLOAD NOW!


Book Synopsis The Definitive Guide to Conversational AI with Dialogflow and Google Cloud by : Lee Boonstra

Download or read book The Definitive Guide to Conversational AI with Dialogflow and Google Cloud written by Lee Boonstra and published by Apress. This book was released on 2021-06-25 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build enterprise chatbots for web, social media, voice assistants, IoT, and telephony contact centers with Google's Dialogflow conversational AI technology. This book will explain how to get started with conversational AI using Google and how enterprise users can use Dialogflow as part of Google Cloud. It will cover the core concepts such as Dialogflow essentials, deploying chatbots on web and social media channels, and building voice agents including advanced tips and tricks such as intents, entities, and working with context. The Definitive Guide to Conversational AI with Dialogflow and Google Cloud also explains how to build multilingual chatbots, orchestrate sub chatbots into a bigger conversational platform, use virtual agent analytics with popular tools, such as BigQuery or Chatbase, and build voice bots. It concludes with coverage of more advanced use cases, such as building fulfillment functionality, building your own integrations, securing your chatbots, and building your own voice platform with the Dialogflow SDK and other Google Cloud machine learning APIs. After reading this book, you will understand how to build cross-channel enterprise bots with popular Google tools such as Dialogflow, Google Cloud AI, Cloud Run, Cloud Functions, and Chatbase. ​​What You Will Learn Discover Dialogflow, Dialogflow Essentials, Dialogflow CX, and how machine learning is used Create Dialogflow projects for individuals and enterprise usage Work with Dialogflow essential concepts such as intents, entities, custom entities, system entities, composites, and how to track context Build bots quickly using prebuilt agents, small talk modules, and FAQ knowledge bases Use Dialogflow for an out-of-the-box agent review Deploy text conversational UIs for web and social media channels Build voice agents for voice assistants, phone gateways, and contact centers Create multilingual chatbots Orchestrate many sub-chatbots to build a bigger conversational platform Use chatbot analytics and test the quality of your Dialogflow agent See the new Dialogflow CX concepts, how Dialogflow CX fits in, and what’s different in Dialogflow CX Who This Book Is For Everyone interested in building chatbots for web, social media, voice assistants, or contact centers using Google’s conversational AI/cloud technology.

Introducing MLOps

Download Introducing MLOps PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098116429
Total Pages : 171 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Introducing MLOps by : Mark Treveil

Download or read book Introducing MLOps written by Mark Treveil and published by "O'Reilly Media, Inc.". This book was released on 2020-11-30 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized

Combating Threats and Attacks Targeting The AI Ecosystem

Download Combating Threats and Attacks Targeting The AI Ecosystem PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 1501520547
Total Pages : 252 pages
Book Rating : 4.5/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Combating Threats and Attacks Targeting The AI Ecosystem by : Aditya Sood

Download or read book Combating Threats and Attacks Targeting The AI Ecosystem written by Aditya Sood and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-12-04 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores in detail the AI-driven cyber threat landscape, including inherent AI threats and risks that exist in Large Language Models (LLMs), Generative AI applications, and the AI infrastructure. The book highlights hands-on technical approaches to detect security flaws in AI systems and applications utilizing the intelligence gathered from real-world case studies. Lastly, the book presents a very detailed discussion of the defense mechanisms and practical solutions to secure LLMs, GenAI applications, and the AI infrastructure. The chapters are structured with a granular framework, starting with AI concepts, followed by practical assessment techniques based on real-world intelligence, and concluding with required security defenses. Artificial Intelligence (AI) and cybersecurity are deeply intertwined and increasingly essential to modern digital defense strategies. The book is a comprehensive resource for IT professionals, business leaders, and cybersecurity experts for understanding and defending against AI-driven cyberattacks.

Impacts of Generative AI on Creativity in Higher Education

Download Impacts of Generative AI on Creativity in Higher Education PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 :
Total Pages : 564 pages
Book Rating : 4.3/5 (693 download)

DOWNLOAD NOW!


Book Synopsis Impacts of Generative AI on Creativity in Higher Education by : Fields, Ziska

Download or read book Impacts of Generative AI on Creativity in Higher Education written by Fields, Ziska and published by IGI Global. This book was released on 2024-08-27 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many educators in the realm of higher education face the critical challenge of fostering creativity in students using traditional teaching methods. In today's rapidly evolving world, these methods have become inadequate to nurture the innovative thinking demanded by modern society. Impacts of Generative AI on Creativity in Higher Education reveals a solution in the integration of generative AI into higher education. To revolutionize how we nurture and harness student creativity, the book explores the intersection of creativity, generative AI, and higher education with a fresh perspective and practical guidance for educators and institutions. It delves into the fundamental concepts of generative AI and its potential applications, providing educators with the tools to create more engaging and innovative learning environments.

Generative AI with Large Language Models: A Comprehensive Guide

Download Generative AI with Large Language Models: A Comprehensive Guide PDF Online Free

Author :
Publisher : Anand Vemula
ISBN 13 :
Total Pages : 43 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Generative AI with Large Language Models: A Comprehensive Guide by : Anand Vemula

Download or read book Generative AI with Large Language Models: A Comprehensive Guide written by Anand Vemula and published by Anand Vemula. This book was released on with total page 43 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delves into the fascinating world of Generative AI, exploring the two key technologies driving its advancements: Large Language Models (LLMs) and Foundation Models (FMs). Part 1: Foundations LLMs Demystified: We begin by understanding LLMs, powerful AI models trained on massive amounts of text data. These models can generate human-quality text, translate languages, write different creative formats, and even answer your questions in an informative way. The Rise of FMs: However, LLMs are just a piece of the puzzle. We explore Foundation Models, a broader category encompassing models trained on various data types like images, audio, and even scientific data. These models represent a significant leap forward in AI, offering a more versatile approach to information processing. Part 2: LLMs and Generative AI Applications Training LLMs: We delve into the intricate process of training LLMs, from data acquisition and pre-processing to different training techniques like supervised and unsupervised learning. The chapter also explores challenges like computational resources and data bias, along with best practices for responsible LLM training. Fine-Tuning for Specific Tasks: LLMs can be further specialized for targeted tasks through fine-tuning. We explore how fine-tuning allows LLMs to excel in areas like creative writing, code generation, drug discovery, and even music composition. Part 3: Advanced Topics LLM Architectures: We take a deep dive into the technical aspects of LLMs, exploring the workings of Transformer networks, the backbone of modern LLMs. We also examine the role of attention mechanisms in LLM processing and learn about different prominent LLM architectures like GPT-3 and Jurassic-1 Jumbo. Scaling Generative AI: Scaling up LLMs presents significant computational challenges. The chapter explores techniques like model parallelism and distributed training to address these hurdles, along with hardware considerations like GPUs and TPUs that facilitate efficient LLM training. Most importantly, we discuss the crucial role of safety and ethics in generative AI development. Mitigating bias, addressing potential risks like deepfakes, and ensuring transparency are all essential for responsible AI development. Part 4: The Future Evolving Generative AI Landscape: We explore emerging trends in LLM research, like the development of even larger and more capable models, along with advancements in explainable AI and the rise of multimodal LLMs that can handle different data types. We also discuss the potential applications of generative AI in unforeseen areas like personalized education and healthcare. Societal Impact and the Future of Work: The book concludes by examining the societal and economic implications of generative AI. We explore the potential transformation of industries, the need for workforce reskilling, and the importance of human-AI collaboration. Additionally, the book emphasizes the need for robust regulations to address concerns like bias, data privacy, and transparency in generative AI development. This book equips you with a comprehensive understanding of generative AI, its core technologies, its applications, and the considerations for its responsible development and deployment.

Combating Cyberattacks Targeting the AI Ecosystem

Download Combating Cyberattacks Targeting the AI Ecosystem PDF Online Free

Author :
Publisher : Stylus Publishing, LLC
ISBN 13 : 1501520555
Total Pages : 249 pages
Book Rating : 4.5/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Combating Cyberattacks Targeting the AI Ecosystem by : Aditya K. Sood

Download or read book Combating Cyberattacks Targeting the AI Ecosystem written by Aditya K. Sood and published by Stylus Publishing, LLC. This book was released on 2024-10-10 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores in detail the AI-driven cyber threat landscape, including inherent AI threats and risks that exist in Large Language Models (LLMs), Generative AI applications, and the AI infrastructure. The book highlights hands-on technical approaches to detect security flaws in AI systems and applications utilizing the intelligence gathered from real-world case studies. Lastly, the book presents a very detailed discussion of the defense mechanisms and practical solutions to secure LLMs, GenAI applications, and the AI infrastructure. The chapters are structured with a granular framework, starting with AI concepts, followed by practical assessment techniques based on real-world intelligence, and concluding with required security defenses. Artificial Intelligence (AI) and cybersecurity are deeply intertwined and increasingly essential to modern digital defense strategies. The book is a comprehensive resource for IT professionals, business leaders, and cybersecurity experts for understanding and defending against AI-driven cyberattacks. FEATURES: Includes real-world case studies with detailed examples of AI-centric attacks and defense mechanisms Features hands-on security assessments with practical techniques for evaluating the security of AI systems Demonstrates advanced defense strategies with proven methods to protect LLMs, GenAI applications, and the infrastructure

Edge Computing Patterns for Solution Architects

Download Edge Computing Patterns for Solution Architects PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1805125818
Total Pages : 214 pages
Book Rating : 4.8/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Edge Computing Patterns for Solution Architects by : Ashok Iyengar

Download or read book Edge Computing Patterns for Solution Architects written by Ashok Iyengar and published by Packt Publishing Ltd. This book was released on 2024-01-30 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master edge computing architectures, unlock industry-specific patterns, apply proven best practices, and progress from basics to end-to-end solutions Key Features Unlock scalable edge solutions by mastering proven archetypes for real-world success Learn industry-specific patterns, tailoring solutions for diverse sector needs Make strategic decisions between cloud-out and edge-in strategies with confidence Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionEnriched with insights from a hyperscaler’s perspective, Edge Computing Patterns for Solution Architects will prepare you for seamless collaboration with communication service providers (CSPs) and device manufacturers and help you in making the pivotal choice between cloud-out and edge-in approaches. This book presents industry-specific use cases that shape tailored edge solutions, addressing non-functional requirements to unlock the potential of standard edge components. As you progress, you’ll navigate the archetypes of edge solution architecture from the basics to network edge and end-to-end configurations. You’ll also discover the weight of data and the power of automation for scale and immerse yourself in the edge mantra of low latency and high bandwidth, absorbing invaluable do's and don'ts from real-world experiences. Recommended practices, honed through practical insights, have also been added to guide you in mastering the dynamic realm of edge computing. By the end of this book, you'll have built a comprehensive understanding of edge concepts and terminology and be ready to traverse the evolving edge computing landscape.What you will learn Distinguish edge concepts, recognizing that definitions vary among different audiences Explore industry-specific architecture patterns that shape custom solutions Analyze three proven edge computing archetypes for real-world scalability Apply best practices judiciously, adapting patterns to meet specific requirements Evaluate data for storage or discarding based on compliance and industry norms Advance from the foundational basics to complex end-to-end edge configurations Gain practical insights for achieving low-latency, high-bandwidth edge solutions Who this book is for Ideal for VPs of IT infrastructure, enterprise architects, solution architects, and SRE professionals with a background in cloud computing, this book is for individuals involved in crafting edge reference architectures and tailored solutions across diverse industries. It provides valuable insights and practical patterns drawn from real-world implementations in sectors such as retail, telecommunications, and manufacturing. Foundational knowledge of cloud computing is assumed to align with the advanced nature of the content covered.

Large Language Model-Based Solutions

Download Large Language Model-Based Solutions PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1394240732
Total Pages : 322 pages
Book Rating : 4.3/5 (942 download)

DOWNLOAD NOW!


Book Synopsis Large Language Model-Based Solutions by : Shreyas Subramanian

Download or read book Large Language Model-Based Solutions written by Shreyas Subramanian and published by John Wiley & Sons. This book was released on 2024-04-02 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to build cost-effective apps using Large Language Models In Large Language Model-Based Solutions: How to Deliver Value with Cost-Effective Generative AI Applications, Principal Data Scientist at Amazon Web Services, Shreyas Subramanian, delivers a practical guide for developers and data scientists who wish to build and deploy cost-effective large language model (LLM)-based solutions. In the book, you'll find coverage of a wide range of key topics, including how to select a model, pre- and post-processing of data, prompt engineering, and instruction fine tuning. The author sheds light on techniques for optimizing inference, like model quantization and pruning, as well as different and affordable architectures for typical generative AI (GenAI) applications, including search systems, agent assists, and autonomous agents. You'll also find: Effective strategies to address the challenge of the high computational cost associated with LLMs Assistance with the complexities of building and deploying affordable generative AI apps, including tuning and inference techniques Selection criteria for choosing a model, with particular consideration given to compact, nimble, and domain-specific models Perfect for developers and data scientists interested in deploying foundational models, or business leaders planning to scale out their use of GenAI, Large Language Model-Based Solutions will also benefit project leaders and managers, technical support staff, and administrators with an interest or stake in the subject.