Generalized Solutions of First Order PDEs

Download Generalized Solutions of First Order PDEs PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461208475
Total Pages : 324 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Generalized Solutions of First Order PDEs by : Andrei I. Subbotin

Download or read book Generalized Solutions of First Order PDEs written by Andrei I. Subbotin and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hamilton-Jacobi equations and other types of partial differential equa tions of the first order are dealt with in many branches of mathematics, mechanics, and physics. These equations are usually nonlinear, and func tions vital for the considered problems are not smooth enough to satisfy these equations in the classical sense. An example of such a situation can be provided by the value function of a differential game or an optimal control problem. It is known that at the points of differentiability this function satisfies the corresponding Hamilton-Jacobi-Isaacs-Bellman equation. On the other hand, it is well known that the value function is as a rule not everywhere differentiable and therefore is not a classical global solution. Thus in this case, as in many others where first-order PDE's are used, there arises necessity to introduce a notion of generalized solution and to develop theory and methods for constructing these solutions. In the 50s-70s, problems that involve nonsmooth solutions of first order PDE's were considered by Bakhvalov, Evans, Fleming, Gel'fand, Godunov, Hopf, Kuznetzov, Ladyzhenskaya, Lax, Oleinik, Rozhdestven ski1, Samarskii, Tikhonov, and other mathematicians. Among the inves tigations of this period we should mention the results of S.N. Kruzhkov, which were obtained for Hamilton-Jacobi equation with convex Hamilto nian. A review of the investigations of this period is beyond the limits of the present book. A sufficiently complete bibliography can be found in [58, 126, 128, 141].

Generalized Characteristics of First Order PDEs

Download Generalized Characteristics of First Order PDEs PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146121758X
Total Pages : 319 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Generalized Characteristics of First Order PDEs by : Arik Melikyan

Download or read book Generalized Characteristics of First Order PDEs written by Arik Melikyan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: In some domains of mechanics, physics and control theory boundary value problems arise for nonlinear first order PDEs. A well-known classical result states a sufficiency condition for local existence and uniqueness of twice differentiable solution. This result is based on the method of characteristics (MC). Very often, and as a rule in control theory, the continuous nonsmooth (non-differentiable) functions have to be treated as a solutions to the PDE. At the points of smoothness such solutions satisfy the equation in classical sense. But if a function satisfies this condition only, with no requirements at the points of nonsmoothness, the PDE may have nonunique solutions. The uniqueness takes place if an appropriate matching principle for smooth solution branches defined in neighboring domains is applied or, in other words, the notion of generalized solution is considered. In each field an appropriate matching principle are used. In Optimal Control and Differential Games this principle is the optimality of the cost function. In physics and mechanics certain laws must be fulfilled for correct matching. A purely mathematical approach also can be used, when the generalized solution is introduced to obtain the existence and uniqueness of the solution, without being aimed to describe (to model) some particular physical phenomenon. Some formulations of the generalized solution may meet the modelling of a given phenomenon, the others may not.

On the Uniqueness of Generalized Solutions of First Order, Quasilinear Partial Differential Equations

Download On the Uniqueness of Generalized Solutions of First Order, Quasilinear Partial Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 16 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis On the Uniqueness of Generalized Solutions of First Order, Quasilinear Partial Differential Equations by : Avron Douglis

Download or read book On the Uniqueness of Generalized Solutions of First Order, Quasilinear Partial Differential Equations written by Avron Douglis and published by . This book was released on 1960 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470054565
Total Pages : 467 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Walter A. Strauss

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Finite Difference Methods for Ordinary and Partial Differential Equations

Download Finite Difference Methods for Ordinary and Partial Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898717839
Total Pages : 356 pages
Book Rating : 4.7/5 (178 download)

DOWNLOAD NOW!


Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Generalized Solutions of Functional Differential Equations

Download Generalized Solutions of Functional Differential Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810212070
Total Pages : 428 pages
Book Rating : 4.2/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Generalized Solutions of Functional Differential Equations by : Joseph Wiener

Download or read book Generalized Solutions of Functional Differential Equations written by Joseph Wiener and published by World Scientific. This book was released on 1993 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need to investigate functional differential equations with discontinuous delays is addressed in this book. Recording the work and findings of several scientists on differential equations with piecewise continuous arguments over the last few years, this book serves as a useful source of reference. Great interest is placed on discussing the stability, oscillation and periodic properties of the solutions. Considerable attention is also given to the study of initial and boundary-value problems for partial differential equations of mathematical physics with discontinuous time delays. In fact, a large part of the book is devoted to the exploration of differential and functional differential equations in spaces of generalized functions (distributions) and contains a wealth of new information in this area. Each topic discussed appears to provide ample opportunity for extending the known results. A list of new research topics and open problems is also included as an update.

Linear and Nonlinear Waves

Download Linear and Nonlinear Waves PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118031202
Total Pages : 660 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Linear and Nonlinear Waves by : G. B. Whitham

Download or read book Linear and Nonlinear Waves written by G. B. Whitham and published by John Wiley & Sons. This book was released on 2011-10-18 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.

Hyperbolic Problems: Theory, Numerics, Applications

Download Hyperbolic Problems: Theory, Numerics, Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642557112
Total Pages : 946 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Hyperbolic Problems: Theory, Numerics, Applications by : Thomas Y. Hou

Download or read book Hyperbolic Problems: Theory, Numerics, Applications written by Thomas Y. Hou and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.

Handbook of Mathematics for Engineers and Scientists

Download Handbook of Mathematics for Engineers and Scientists PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420010514
Total Pages : 1542 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mathematics for Engineers and Scientists by : Andrei D. Polyanin

Download or read book Handbook of Mathematics for Engineers and Scientists written by Andrei D. Polyanin and published by CRC Press. This book was released on 2006-11-27 with total page 1542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.

Generalized Solutions of Nonlinear Partial Differential Equations

Download Generalized Solutions of Nonlinear Partial Differential Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080872573
Total Pages : 429 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Generalized Solutions of Nonlinear Partial Differential Equations by : E.E. Rosinger

Download or read book Generalized Solutions of Nonlinear Partial Differential Equations written by E.E. Rosinger and published by Elsevier. This book was released on 1987-11-01 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concerning existence, uniqueness regularity, etc., of generalized solutions for nonlinear partial differential equations can be reduced to elementary calculus in Euclidean spaces, combined with elementary algebra in quotient rings of families of smooth functions on Euclidean spaces, all of that joined by certain asymptotic interpretations. In this way, one avoids the complexities and difficulties of the customary functional analytic methods which would involve sophisticated topologies on various function spaces. The result is a rather elementary yet powerful and far-reaching method which can, among others, give generalized solutions to linear and nonlinear partial differential equations previously unsolved or even unsolvable within distributions or hyperfunctions.Part 1 of the volume discusses the basic limitations of the linear theory of distributions when dealing with linear or nonlinear partial differential equations, particularly the impossibility and degeneracy results. Part 2 examines the way Colombeau constructs a nonlinear theory of generalized functions and then succeeds in proving quite impressive existence, uniqueness, regularity, etc., results concerning generalized solutions of large classes of linear and nonlinear partial differential equations. Finally, Part 3 is a short presentation of the nonlinear theory of Rosinger, showing its connections with Colombeau's theory, which it contains as a particular case.

Handbook of First-Order Partial Differential Equations

Download Handbook of First-Order Partial Differential Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780415272674
Total Pages : 522 pages
Book Rating : 4.2/5 (726 download)

DOWNLOAD NOW!


Book Synopsis Handbook of First-Order Partial Differential Equations by : Andrei D. Polyanin

Download or read book Handbook of First-Order Partial Differential Equations written by Andrei D. Polyanin and published by CRC Press. This book was released on 2001-11-15 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains about 3000 first-order partial differential equations with solutions. New exact solutions to linear and nonlinear equations are included. The text pays special attention to equations of the general form, showing their dependence upon arbitrary functions. At the beginning of each section, basic solution methods for the corresponding types of differential equations are outlined and specific examples are considered. It presents equations and their applications, including differential geometry, nonlinear mechanics, gas dynamics, heat and mass transfer, wave theory and much more. This handbook is an essential reference source for researchers, engineers and students of applied mathematics, mechanics, control theory and the engineering sciences.

Advances in Nonlinear Dynamics and Control: A Report from Russia

Download Advances in Nonlinear Dynamics and Control: A Report from Russia PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146120349X
Total Pages : 286 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Advances in Nonlinear Dynamics and Control: A Report from Russia by : Alexander B. Kurzhanski

Download or read book Advances in Nonlinear Dynamics and Control: A Report from Russia written by Alexander B. Kurzhanski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this volume is to present a coherent collection of overviews of recent Russian research in Control Theory and Nonlinear Dynamics written by active investigators in these fields. It is needless to say that the contribution of the scientists of the former Soviet Union to the development of nonlinear dynamics and control was significant and that their scientific schools and research community have highly evolved points of view, accents and depth which complemented, enhanced and sometimes inspired research directions in the West. With scientific exchange strongly increasing, there is still a consider able number of Eastern publications unknown to the Western community. We have therefore encouraged the authors to produce extended bibliogra phies in their papers. The particular emphasis of this volume is on the treatment of uncer tain systems in a deterministic setting-a field highly developed in the former Soviet Union and actively investigated in the West. The topics are concentrated around the three main branches of un certain dynamics which are the theory of Differential Games, the set membership approach to Evolution, Estimation and Control and the the ory of Robust Stabilization. The application of these techniques to non linear systems as well as the global optimization of the latter are also among the issues treated in this volume.

Partial Differential Equations of Applied Mathematics

Download Partial Differential Equations of Applied Mathematics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118031407
Total Pages : 968 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations of Applied Mathematics by : Erich Zauderer

Download or read book Partial Differential Equations of Applied Mathematics written by Erich Zauderer and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition features the latest tools for modeling, characterizing, and solving partial differential equations The Third Edition of this classic text offers a comprehensive guide to modeling, characterizing, and solving partial differential equations (PDEs). The author provides all the theory and tools necessary to solve problems via exact, approximate, and numerical methods. The Third Edition retains all the hallmarks of its previous editions, including an emphasis on practical applications, clear writing style and logical organization, and extensive use of real-world examples. Among the new and revised material, the book features: * A new section at the end of each original chapter, exhibiting the use of specially constructed Maple procedures that solve PDEs via many of the methods presented in the chapters. The results can be evaluated numerically or displayed graphically. * Two new chapters that present finite difference and finite element methods for the solution of PDEs. Newly constructed Maple procedures are provided and used to carry out each of these methods. All the numerical results can be displayed graphically. * A related FTP site that includes all the Maple code used in the text. * New exercises in each chapter, and answers to many of the exercises are provided via the FTP site. A supplementary Instructor's Solutions Manual is available. The book begins with a demonstration of how the three basic types of equations-parabolic, hyperbolic, and elliptic-can be derived from random walk models. It then covers an exceptionally broad range of topics, including questions of stability, analysis of singularities, transform methods, Green's functions, and perturbation and asymptotic treatments. Approximation methods for simplifying complicated problems and solutions are described, and linear and nonlinear problems not easily solved by standard methods are examined in depth. Examples from the fields of engineering and physical sciences are used liberally throughout the text to help illustrate how theory and techniques are applied to actual problems. With its extensive use of examples and exercises, this text is recommended for advanced undergraduates and graduate students in engineering, science, and applied mathematics, as well as professionals in any of these fields. It is possible to use the text, as in the past, without use of the new Maple material.

Distributions in the Physical and Engineering Sciences, Volume 2

Download Distributions in the Physical and Engineering Sciences, Volume 2 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817646523
Total Pages : 427 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Distributions in the Physical and Engineering Sciences, Volume 2 by : Alexander I. Saichev

Download or read book Distributions in the Physical and Engineering Sciences, Volume 2 written by Alexander I. Saichev and published by Springer Science & Business Media. This book was released on 2013-09-05 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems. It is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important for practitioners and researchers. The goal of the books is to give the reader, specialist and non-specialist, useable and modern mathematical tools in their research and analysis. Volume 2: Linear and Nonlinear Dynamics of Continuous Media continues the multivolume project which endeavors to show how the theory of distributions, also called the theory of generalized functions, can be used by graduate students and researchers in applied mathematics, physical sciences, and engineering. It contains an analysis of the three basic types of linear partial differential equations--elliptic, parabolic, and hyperbolic--as well as chapters on first-order nonlinear partial differential equations and conservation laws, and generalized solutions of first-order nonlinear PDEs. Nonlinear wave, growing interface, and Burger’s equations, KdV equations, and the equations of gas dynamics and porous media are also covered. The careful explanations, accessible writing style, many illustrations/examples and solutions also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. Features · Application oriented exposition of distributional (Dirac delta) methods in the theory of partial differential equations. Abstract formalism is keep to a minimum. · Careful and rich selection of examples and problems arising in real-life situations. Complete solutions to all exercises appear at the end of the book. · Clear explanations, motivations, and illustration of all necessary mathematical concepts.

Handbook of Exact Solutions to Mathematical Equations

Download Handbook of Exact Solutions to Mathematical Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1040092934
Total Pages : 660 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Exact Solutions to Mathematical Equations by : Andrei D. Polyanin

Download or read book Handbook of Exact Solutions to Mathematical Equations written by Andrei D. Polyanin and published by CRC Press. This book was released on 2024-08-26 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference book describes the exact solutions of the following types of mathematical equations: ● Algebraic and Transcendental Equations ● Ordinary Differential Equations ● Systems of Ordinary Differential Equations ● First-Order Partial Differential Equations ● Linear Equations and Problems of Mathematical Physics ● Nonlinear Equations of Mathematical Physics ● Systems of Partial Differential Equations ● Integral Equations ● Difference and Functional Equations ● Ordinary Functional Differential Equations ● Partial Functional Differential Equations The book delves into equations that find practical applications in a wide array of natural and engineering sciences, including the theory of heat and mass transfer, wave theory, hydrodynamics, gas dynamics, combustion theory, elasticity theory, general mechanics, theoretical physics, nonlinear optics, biology, chemical engineering sciences, ecology, and more. Most of these equations are of a reasonably general form and dependent on free parameters or arbitrary functions. The Handbook of Exact Solutions to Mathematical Equations generally has no analogs in world literature and contains a vast amount of new material. The exact solutions given in the book, being rigorous mathematical standards, can be used as test problems to assess the accuracy and verify the adequacy of various numerical and approximate analytical methods for solving mathematical equations, as well as to check and compare the effectiveness of exact analytical methods.

Symplectic Geometry and Analytical Mechanics

Download Symplectic Geometry and Analytical Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400938071
Total Pages : 541 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Symplectic Geometry and Analytical Mechanics by : P. Libermann

Download or read book Symplectic Geometry and Analytical Mechanics written by P. Libermann and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right end It isn't that they can't see the solution. and begin with the answers. Then one day, It is that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' Brown 'The point of a Pin'. in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thouglit to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sci ences has changed drastically in recent years: measure theory is used (non-trivially) in re gional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homo topy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.

Solution of Continuous Nonlinear PDEs through Order Completion

Download Solution of Continuous Nonlinear PDEs through Order Completion PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080872921
Total Pages : 449 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Solution of Continuous Nonlinear PDEs through Order Completion by : M.B. Oberguggenberger

Download or read book Solution of Continuous Nonlinear PDEs through Order Completion written by M.B. Oberguggenberger and published by Elsevier. This book was released on 1994-07-14 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function.