Statistical Methods for Ranking Data

Download Statistical Methods for Ranking Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493914715
Total Pages : 276 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Statistical Methods for Ranking Data by : Mayer Alvo

Download or read book Statistical Methods for Ranking Data written by Mayer Alvo and published by Springer. This book was released on 2014-09-02 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors’ website.

Statistical Analysis of Next Generation Sequencing Data

Download Statistical Analysis of Next Generation Sequencing Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319379050
Total Pages : 0 pages
Book Rating : 4.3/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Next Generation Sequencing Data by : Somnath Datta

Download or read book Statistical Analysis of Next Generation Sequencing Data written by Somnath Datta and published by Springer. This book was released on 2016-09-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University. He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics.

Statistical Analysis of Microbiome Data

Download Statistical Analysis of Microbiome Data PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030733513
Total Pages : 349 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Microbiome Data by : Somnath Datta

Download or read book Statistical Analysis of Microbiome Data written by Somnath Datta and published by Springer Nature. This book was released on 2021-10-27 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microbiome research has focused on microorganisms that live within the human body and their effects on health. During the last few years, the quantification of microbiome composition in different environments has been facilitated by the advent of high throughput sequencing technologies. The statistical challenges include computational difficulties due to the high volume of data; normalization and quantification of metabolic abundances, relative taxa and bacterial genes; high-dimensionality; multivariate analysis; the inherently compositional nature of the data; and the proper utilization of complementary phylogenetic information. This has resulted in an explosion of statistical approaches aimed at tackling the unique opportunities and challenges presented by microbiome data. This book provides a comprehensive overview of the state of the art in statistical and informatics technologies for microbiome research. In addition to reviewing demonstrably successful cutting-edge methods, particular emphasis is placed on examples in R that rely on available statistical packages for microbiome data. With its wide-ranging approach, the book benefits not only trained statisticians in academia and industry involved in microbiome research, but also other scientists working in microbiomics and in related fields.

Multivariate Statistical Methods

Download Multivariate Statistical Methods PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030813924
Total Pages : 424 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Statistical Methods by : György Terdik

Download or read book Multivariate Statistical Methods written by György Terdik and published by Springer Nature. This book was released on 2021-10-26 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a general method for deriving higher-order statistics of multivariate distributions with simple algorithms that allow for actual calculations. Multivariate nonlinear statistical models require the study of higher-order moments and cumulants. The main tool used for the definitions is the tensor derivative, leading to several useful expressions concerning Hermite polynomials, moments, cumulants, skewness, and kurtosis. A general test of multivariate skewness and kurtosis is obtained from this treatment. Exercises are provided for each chapter to help the readers understand the methods. Lastly, the book includes a comprehensive list of references, equipping readers to explore further on their own.

Artificial Intelligence Frontiers in Statistics

Download Artificial Intelligence Frontiers in Statistics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 100015291X
Total Pages : 431 pages
Book Rating : 4.0/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence Frontiers in Statistics by : David J. Hand

Download or read book Artificial Intelligence Frontiers in Statistics written by David J. Hand and published by CRC Press. This book was released on 2020-11-26 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a summary of recent work on the interface between artificial intelligence and statistics. It does this through a series of papers by different authors working in different areas of this interface. These papers are a selected and referenced subset of papers presented at the 3rd Interntional Workshop on Artificial Intelligence and Statistics, Florida, January 1991.

Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry

Download Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319458094
Total Pages : 294 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry by : Susmita Datta

Download or read book Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry written by Susmita Datta and published by Springer. This book was released on 2016-12-15 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies. Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass spectrometry, time-of-flight data, and Fourier transform mass spectrometry are but a selection of the measurement platforms available to the modern analyst. Thus in practical proteomics or metabolomics, researchers will not only be confronted with new high dimensional data types—as opposed to the familiar data structures in more classical genomics—but also with great variation between distinct types of mass spectral measurements derived from different platforms, which may complicate analyses, comparison, and interpretation of results.

Frontiers in Data Science

Download Frontiers in Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 135164324X
Total Pages : 404 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Frontiers in Data Science by : Matthias Dehmer

Download or read book Frontiers in Data Science written by Matthias Dehmer and published by CRC Press. This book was released on 2017-10-16 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Frontiers in Data Science deals with philosophical and practical results in Data Science. A broad definition of Data Science describes the process of analyzing data to transform data into insights. This also involves asking philosophical, legal and social questions in the context of data generation and analysis. In fact, Big Data also belongs to this universe as it comprises data gathering, data fusion and analysis when it comes to manage big data sets. A major goal of this book is to understand data science as a new scientific discipline rather than the practical aspects of data analysis alone.

Bayesian Statistics for Beginners

Download Bayesian Statistics for Beginners PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 : 0198841299
Total Pages : 430 pages
Book Rating : 4.1/5 (988 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics for Beginners by : Therese M. Donovan

Download or read book Bayesian Statistics for Beginners written by Therese M. Donovan and published by Oxford University Press, USA. This book was released on 2019 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an entry-level book on Bayesian statistics written in a casual, and conversational tone. The authors walk a reader through many sample problems step-by-step to provide those with little background in math or statistics with the vocabulary, notation, and understanding of the calculations used in many Bayesian problems.

Statistical Techniques for Neuroscientists

Download Statistical Techniques for Neuroscientists PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315356759
Total Pages : 349 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Statistical Techniques for Neuroscientists by : Young K. Truong

Download or read book Statistical Techniques for Neuroscientists written by Young K. Truong and published by CRC Press. This book was released on 2016-10-04 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Techniques for Neuroscientists introduces new and useful methods for data analysis involving simultaneous recording of neuron or large cluster (brain region) neuron activity. The statistical estimation and tests of hypotheses are based on the likelihood principle derived from stationary point processes and time series. Algorithms and software development are given in each chapter to reproduce the computer simulated results described therein. The book examines current statistical methods for solving emerging problems in neuroscience. These methods have been applied to data involving multichannel neural spike train, spike sorting, blind source separation, functional and effective neural connectivity, spatiotemporal modeling, and multimodal neuroimaging techniques. The author provides an overview of various methods being applied to specific research areas of neuroscience, emphasizing statistical principles and their software. The book includes examples and experimental data so that readers can understand the principles and master the methods. The first part of the book deals with the traditional multivariate time series analysis applied to the context of multichannel spike trains and fMRI using respectively the probability structures or likelihood associated with time-to-fire and discrete Fourier transforms (DFT) of point processes. The second part introduces a relatively new form of statistical spatiotemporal modeling for fMRI and EEG data analysis. In addition to neural scientists and statisticians, anyone wishing to employ intense computing methods to extract important features and information directly from data rather than relying heavily on models built on leading cases such as linear regression or Gaussian processes will find this book extremely helpful.

Bayesian Statistics the Fun Way

Download Bayesian Statistics the Fun Way PDF Online Free

Author :
Publisher : No Starch Press
ISBN 13 : 1593279566
Total Pages : 258 pages
Book Rating : 4.5/5 (932 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics the Fun Way by : Will Kurt

Download or read book Bayesian Statistics the Fun Way written by Will Kurt and published by No Starch Press. This book was released on 2019-07-09 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.

Probability in Physics

Download Probability in Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642213286
Total Pages : 325 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Probability in Physics by : Yemima Ben-Menahem

Download or read book Probability in Physics written by Yemima Ben-Menahem and published by Springer Science & Business Media. This book was released on 2012-01-25 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.

Statistical Inference as Severe Testing

Download Statistical Inference as Severe Testing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108563309
Total Pages : 503 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Statistical Inference as Severe Testing by : Deborah G. Mayo

Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

Statistical Analysis of Microbiome Data with R

Download Statistical Analysis of Microbiome Data with R PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811315345
Total Pages : 518 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Microbiome Data with R by : Yinglin Xia

Download or read book Statistical Analysis of Microbiome Data with R written by Yinglin Xia and published by Springer. This book was released on 2018-10-06 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book addresses the statistical modelling and analysis of microbiome data using cutting-edge R software. It includes real-world data from the authors’ research and from the public domain, and discusses the implementation of R for data analysis step by step. The data and R computer programs are publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, so that these new methods can be readily applied in their own research. The book also discusses recent developments in statistical modelling and data analysis in microbiome research, as well as the latest advances in next-generation sequencing and big data in methodological development and applications. This timely book will greatly benefit all readers involved in microbiome, ecology and microarray data analyses, as well as other fields of research.

Sharp Inequalities for Ordered Random Variables in Statistics and Reliability

Download Sharp Inequalities for Ordered Random Variables in Statistics and Reliability PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031613473
Total Pages : 681 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Sharp Inequalities for Ordered Random Variables in Statistics and Reliability by : Narayanaswamy Balakrishnan

Download or read book Sharp Inequalities for Ordered Random Variables in Statistics and Reliability written by Narayanaswamy Balakrishnan and published by Springer Nature. This book was released on with total page 681 pages. Available in PDF, EPUB and Kindle. Book excerpt:

The Art of Statistics

Download The Art of Statistics PDF Online Free

Author :
Publisher : Basic Books
ISBN 13 : 1541618521
Total Pages : 359 pages
Book Rating : 4.5/5 (416 download)

DOWNLOAD NOW!


Book Synopsis The Art of Statistics by : David Spiegelhalter

Download or read book The Art of Statistics written by David Spiegelhalter and published by Basic Books. This book was released on 2019-09-03 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this "important and comprehensive" guide to statistical thinking (New Yorker), discover how data literacy is changing the world and gives you a better understanding of life’s biggest problems. Statistics are everywhere, as integral to science as they are to business, and in the popular media hundreds of times a day. In this age of big data, a basic grasp of statistical literacy is more important than ever if we want to separate the fact from the fiction, the ostentatious embellishments from the raw evidence -- and even more so if we hope to participate in the future, rather than being simple bystanders. In The Art of Statistics, world-renowned statistician David Spiegelhalter shows readers how to derive knowledge from raw data by focusing on the concepts and connections behind the math. Drawing on real world examples to introduce complex issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether a notorious serial killer could have been caught earlier, and if screening for ovarian cancer is beneficial. The Art of Statistics not only shows us how mathematicians have used statistical science to solve these problems -- it teaches us how we too can think like statisticians. We learn how to clarify our questions, assumptions, and expectations when approaching a problem, and -- perhaps even more importantly -- we learn how to responsibly interpret the answers we receive. Combining the incomparable insight of an expert with the playful enthusiasm of an aficionado, The Art of Statistics is the definitive guide to stats that every modern person needs.

Nonparametric Bayesian Inference in Biostatistics

Download Nonparametric Bayesian Inference in Biostatistics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319195182
Total Pages : 448 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Bayesian Inference in Biostatistics by : Riten Mitra

Download or read book Nonparametric Bayesian Inference in Biostatistics written by Riten Mitra and published by Springer. This book was released on 2015-07-25 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

Model-Free Prediction and Regression

Download Model-Free Prediction and Regression PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319213474
Total Pages : 256 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Model-Free Prediction and Regression by : Dimitris N. Politis

Download or read book Model-Free Prediction and Regression written by Dimitris N. Politis and published by Springer. This book was released on 2015-11-13 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, computer-intensive methods such as the bootstrap and cross-validation freed practitioners from the limitations of parametric models, and paved the way towards the `big data' era of the 21st century. Nonetheless, there is a further step one may take, i.e., going beyond even nonparametric models; this is where the Model-Free Prediction Principle is useful. Interestingly, being able to predict a response variable Y associated with a regressor variable X taking on any possible value seems to inadvertently also achieve the main goal of modeling, i.e., trying to describe how Y depends on X. Hence, as prediction can be treated as a by-product of model-fitting, key estimation problems can be addressed as a by-product of being able to perform prediction. In other words, a practitioner can use Model-Free Prediction ideas in order to additionally obtain point estimates and confidence intervals for relevant parameters leading to an alternative, transformation-based approach to statistical inference.