Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot

Download Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821836374
Total Pages : 534 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot by : Michel Laurent Lapidus

Download or read book Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot written by Michel Laurent Lapidus and published by American Mathematical Soc.. This book was released on 2004 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers an excellent selection of cutting-edge articles about fractal geometry, covering the great breadth of mathematics and related areas touched by this subject. Included are rich survey articles and fine expository papers. The high-quality contributions to the volume by well-known researchers--including two articles by Mandelbrot--provide a solid cross-section of recent research representing the richness and variety of contemporary advances in and around fractal geometry. In demonstrating the vitality and diversity of the field, this book will motivate further investigation into the many open problems and inspire future research directions. It is suitable for graduate students and researchers interested in fractal geometry and its applications. This is a two-part volume. Part 1 covers analysis, number theory, and dynamical systems; Part 2, multifractals, probability and statistical mechanics, and applications.

Fractal Geometry, Complex Dimensions and Zeta Functions

Download Fractal Geometry, Complex Dimensions and Zeta Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461421764
Total Pages : 583 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry, Complex Dimensions and Zeta Functions by : Michel L. Lapidus

Download or read book Fractal Geometry, Complex Dimensions and Zeta Functions written by Michel L. Lapidus and published by Springer Science & Business Media. This book was released on 2012-09-20 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.

Fractal Geometry and Number Theory

Download Fractal Geometry and Number Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461253144
Total Pages : 277 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry and Number Theory by : Michel L. Lapidus

Download or read book Fractal Geometry and Number Theory written by Michel L. Lapidus and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap pendix B.) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.

Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot

Download Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821836382
Total Pages : 592 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot by : Michel Laurent Lapidus

Download or read book Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot written by Michel Laurent Lapidus and published by American Mathematical Soc.. This book was released on 2004 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers an excellent selection of cutting-edge articles about fractal geometry, covering the great breadth of mathematics and related areas touched by this subject. Included are rich survey articles and fine expository papers. The high-quality contributions to the volume by well-known researchers--including two articles by Mandelbrot--provide a solid cross-section of recent research representing the richness and variety of contemporary advances in and around fractal geometry. In demonstrating the vitality and diversity of the field, this book will motivate further investigation into the many open problems and inspire future research directions. It is suitable for graduate students and researchers interested in fractal geometry and its applications. This is a two-part volume. Part 1 covers analysis, number theory, and dynamical systems; Part 2, multifractals, probability and statistical mechanics, and applications.

Assouad Dimension and Fractal Geometry

Download Assouad Dimension and Fractal Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108478654
Total Pages : 287 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Assouad Dimension and Fractal Geometry by : Jonathan M. Fraser

Download or read book Assouad Dimension and Fractal Geometry written by Jonathan M. Fraser and published by Cambridge University Press. This book was released on 2020-10-29 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first thorough treatment of the Assouad dimension in fractal geometry, with applications to many fields within pure mathematics.

The Geometry of Fractal Sets

Download The Geometry of Fractal Sets PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521337052
Total Pages : 184 pages
Book Rating : 4.3/5 (37 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Fractal Sets by : K. J. Falconer

Download or read book The Geometry of Fractal Sets written by K. J. Falconer and published by Cambridge University Press. This book was released on 1985 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.

Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics

Download Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821891472
Total Pages : 410 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics by : David Carfi

Download or read book Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics written by David Carfi and published by American Mathematical Soc.. This book was released on 2013-10-22 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.

Mathematics of Complexity and Dynamical Systems

Download Mathematics of Complexity and Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461418054
Total Pages : 1885 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Mathematics of Complexity and Dynamical Systems by : Robert A. Meyers

Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

Fractal Geometry and Applications

Download Fractal Geometry and Applications PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 600 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry and Applications by :

Download or read book Fractal Geometry and Applications written by and published by . This book was released on 2004 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Techniques in Fractal Geometry

Download Techniques in Fractal Geometry PDF Online Free

Author :
Publisher : Wiley
ISBN 13 : 9780471957249
Total Pages : 0 pages
Book Rating : 4.9/5 (572 download)

DOWNLOAD NOW!


Book Synopsis Techniques in Fractal Geometry by : Kenneth Falconer

Download or read book Techniques in Fractal Geometry written by Kenneth Falconer and published by Wiley. This book was released on 1997-05-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following on from the success of Fractal Geometry: Mathematical Foundations and Applications, this new sequel presents a variety of techniques in current use for studying the mathematics of fractals. Much of the material presented in this book has come to the fore in recent years. This includes methods for studying dimensions and other parameters of fractal sets and measures, as well as more sophisticated techniques such as thermodynamic formalism and tangent measures. In addition to general theory, many examples and applications are described, in areas such as differential equations and harmonic analysis. This book is mathematically precise, but aims to give an intuitive feel for the subject, with underlying concepts described in a clear and accessible manner. The reader is assumed to be familiar with material from Fractal Geometry, but the main ideas and notation are reviewed in the first two chapters. Each chapter ends with brief notes on the development and current state of the subject. Exercises are included to reinforce the concepts. The author's clear style and up-to-date coverage of the subject make this book essential reading for all those who with to develop their understanding of fractal geometry.

A Tale of Two Fractals

Download A Tale of Two Fractals PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817683828
Total Pages : 148 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis A Tale of Two Fractals by : A.A. Kirillov

Download or read book A Tale of Two Fractals written by A.A. Kirillov and published by Springer Science & Business Media. This book was released on 2013-04-23 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since Benoit Mandelbrot's pioneering work in the late 1970s, scores of research articles and books have been published on the topic of fractals. Despite the volume of literature in the field, the general level of theoretical understanding has remained low; most work is aimed either at too mainstream an audience to achieve any depth or at too specialized a community to achieve widespread use. Written by celebrated mathematician and educator A.A. Kirillov, A Tale of Two Fractals is intended to help bridge this gap, providing an original treatment of fractals that is at once accessible to beginners and sufficiently rigorous for serious mathematicians. The work is designed to give young, non-specialist mathematicians a solid foundation in the theory of fractals, and, in the process, to equip them with exposure to a variety of geometric, analytical, and algebraic tools with applications across other areas.

Fractal Geometry

Download Fractal Geometry PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470299452
Total Pages : 367 pages
Book Rating : 4.4/5 (72 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry by : Kenneth Falconer

Download or read book Fractal Geometry written by Kenneth Falconer and published by John Wiley & Sons. This book was released on 2007-12-10 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its original publication in 1990, Kenneth Falconer's Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. It introduces the general mathematical theory and applications of fractals in a way that is accessible to students from a wide range of disciplines. This new edition has been extensively revised and updated. It features much new material, many additional exercises, notes and references, and an extended bibliography that reflects the development of the subject since the first edition. * Provides a comprehensive and accessible introduction to the mathematical theory and applications of fractals. * Each topic is carefully explained and illustrated by examples and figures. * Includes all necessary mathematical background material. * Includes notes and references to enable the reader to pursue individual topics. * Features a wide selection of exercises, enabling the reader to develop their understanding of the theory. * Supported by a Web site featuring solutions to exercises, and additional material for students and lecturers. Fractal Geometry: Mathematical Foundations and Applications is aimed at undergraduate and graduate students studying courses in fractal geometry. The book also provides an excellent source of reference for researchers who encounter fractals in mathematics, physics, engineering, and the applied sciences. Also by Kenneth Falconer and available from Wiley: Techniques in Fractal Geometry ISBN 0-471-95724-0 Please click here to download solutions to exercises found within this title: http://www.wileyeurope.com/fractal

Fractal Geometry, Complex Dimensions and Zeta Functions

Download Fractal Geometry, Complex Dimensions and Zeta Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387352082
Total Pages : 472 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry, Complex Dimensions and Zeta Functions by : Michel L. Lapidus

Download or read book Fractal Geometry, Complex Dimensions and Zeta Functions written by Michel L. Lapidus and published by Springer Science & Business Media. This book was released on 2007-08-08 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number theory, spectral geometry, and fractal geometry are interlinked in this study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. The Riemann hypothesis is given a natural geometric reformulation in context of vibrating fractal strings, and the book offers explicit formulas extended to apply to the geometric, spectral and dynamic zeta functions associated with a fractal.

Fractals in Probability and Analysis

Download Fractals in Probability and Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107134110
Total Pages : 415 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Fractals in Probability and Analysis by : Christopher J. Bishop

Download or read book Fractals in Probability and Analysis written by Christopher J. Bishop and published by Cambridge University Press. This book was released on 2017 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.

In Search of the Riemann Zeros

Download In Search of the Riemann Zeros PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821842225
Total Pages : 594 pages
Book Rating : 4.8/5 (422 download)

DOWNLOAD NOW!


Book Synopsis In Search of the Riemann Zeros by : Michel Laurent Lapidus

Download or read book In Search of the Riemann Zeros written by Michel Laurent Lapidus and published by American Mathematical Soc.. This book was released on 2008 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Formulated in 1859, the Riemann Hypothesis is the most celebrated and multifaceted open problem in mathematics. In essence, it states that the primes are distributed as harmoniously as possible--or, equivalently, that the Riemann zeros are located on a single vertical line, called the critical line.

Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality

Download Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813230819
Total Pages : 494 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality by : Hafedh Herichi

Download or read book Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality written by Hafedh Herichi and published by World Scientific. This book was released on 2021-07-27 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral operator in their development of the theory of fractal strings and their complex dimensions, specifically in their reinterpretation of the earlier work of M L Lapidus and H Maier on inverse spectral problems for fractal strings and the Riemann hypothesis.One of the main themes of the book is to provide a rigorous framework within which the corresponding question 'Can one hear the shape of a fractal string?' or, equivalently, 'Can one obtain information about the geometry of a fractal string, given its spectrum?' can be further reformulated in terms of the invertibility or the quasi-invertibility of the spectral operator.The infinitesimal shift of the real line is first precisely defined as a differentiation operator on a family of suitably weighted Hilbert spaces of functions on the real line and indexed by a dimensional parameter c. Then, the spectral operator is defined via the functional calculus as a function of the infinitesimal shift. In this manner, it is viewed as a natural 'quantum' analog of the Riemann zeta function. More precisely, within this framework, the spectral operator is defined as the composite map of the Riemann zeta function with the infinitesimal shift, viewed as an unbounded normal operator acting on the above Hilbert space.It is shown that the quasi-invertibility of the spectral operator is intimately connected to the existence of critical zeros of the Riemann zeta function, leading to a new spectral and operator-theoretic reformulation of the Riemann hypothesis. Accordingly, the spectral operator is quasi-invertible for all values of the dimensional parameter c in the critical interval (0,1) (other than in the midfractal case when c =1/2) if and only if the Riemann hypothesis (RH) is true. A related, but seemingly quite different, reformulation of RH, due to the second author and referred to as an 'asymmetric criterion for RH', is also discussed in some detail: namely, the spectral operator is invertible for all values of c in the left-critical interval (0,1/2) if and only if RH is true.These spectral reformulations of RH also led to the discovery of several 'mathematical phase transitions' in this context, for the shape of the spectrum, the invertibility, the boundedness or the unboundedness of the spectral operator, and occurring either in the midfractal case or in the most fractal case when the underlying fractal dimension is equal to ½ or 1, respectively. In particular, the midfractal dimension c=1/2 is playing the role of a critical parameter in quantum statistical physics and the theory of phase transitions and critical phenomena.Furthermore, the authors provide a 'quantum analog' of Voronin's classical theorem about the universality of the Riemann zeta function. Moreover, they obtain and study quantized counterparts of the Dirichlet series and of the Euler product for the Riemann zeta function, which are shown to converge (in a suitable sense) even inside the critical strip.For pedagogical reasons, most of the book is devoted to the study of the quantized Riemann zeta function. However, the results obtained in this monograph are expected to lead to a quantization of most classic arithmetic zeta functions, hence, further 'naturally quantizing' various aspects of analytic number theory and arithmetic geometry.The book should be accessible to experts and non-experts alike, including mathematics and physics graduate students and postdoctoral researchers, interested in fractal geometry, number theory, operator theory and functional analysis, differential equations, complex analysis, spectral theory, as well as mathematical and theoretical physics. Whenever necessary, suitable background about the different subjects involved is provided and the new work is placed in its proper historical context. Several appendices supplementing the main text are also included.

Benoit Mandelbrot

Download Benoit Mandelbrot PDF Online Free

Author :
Publisher : World Scientific Publishing Company Incorporated
ISBN 13 : 9789814366069
Total Pages : 553 pages
Book Rating : 4.3/5 (66 download)

DOWNLOAD NOW!


Book Synopsis Benoit Mandelbrot by : Michael Frame

Download or read book Benoit Mandelbrot written by Michael Frame and published by World Scientific Publishing Company Incorporated. This book was released on 2015 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of articles, many written by people who worked with Mandelbrot, memorializing the remarkable breadth and depth of his work in science and the arts. Contributors include mathematicians, physicists, biologists, economists, and engineers, as expected; and also artists, musicians, teachers, an historian, an architect, a filmmaker, and a comic. Some articles are quite technical, others entirely descriptive. All include stories about Benoit.Also included are chapters on fractals and music by Charles Wuorinen and by Harlan Brothers, on fractals and finance by Richard Hudson and by Christian Walter, on fractal invisibility cloaks by Nathan Cohen, and a personal reminiscence by Aliette Mandelbrot.While he is known most widely for his work in mathematics and in finance, Benoit influenced almost every field of modern intellectual activity. No other book captures the breadth of all of Benoit's accomplishments.