Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Foundations Of Statistics
Download Foundations Of Statistics full books in PDF, epub, and Kindle. Read online Foundations Of Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Foundations of Statistics by : Leonard J. Savage
Download or read book The Foundations of Statistics written by Leonard J. Savage and published by Courier Corporation. This book was released on 2012-08-29 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.
Book Synopsis Foundations of Statistics by : D.G. Rees
Download or read book Foundations of Statistics written by D.G. Rees and published by CRC Press. This book was released on 1987-09-01 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides a through, straightforward first course on basics statistics. Emphasizing the application of theory, it contains 200 fully worked examples and supplies exercises in each chapter-complete with hints and answers.
Book Synopsis Foundations and Applications of Statistics by : Randall J. Pruim
Download or read book Foundations and Applications of Statistics written by Randall J. Pruim and published by American Mathematical Soc.. This book was released on 2011 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment \mathsf{R} is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations.
Book Synopsis The Foundations of Statistics: A Simulation-based Approach by : Shravan Vasishth
Download or read book The Foundations of Statistics: A Simulation-based Approach written by Shravan Vasishth and published by Springer Science & Business Media. This book was released on 2010-11-11 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistics and hypothesis testing are routinely used in areas (such as linguistics) that are traditionally not mathematically intensive. In such fields, when faced with experimental data, many students and researchers tend to rely on commercial packages to carry out statistical data analysis, often without understanding the logic of the statistical tests they rely on. As a consequence, results are often misinterpreted, and users have difficulty in flexibly applying techniques relevant to their own research — they use whatever they happen to have learned. A simple solution is to teach the fundamental ideas of statistical hypothesis testing without using too much mathematics. This book provides a non-mathematical, simulation-based introduction to basic statistical concepts and encourages readers to try out the simulations themselves using the source code and data provided (the freely available programming language R is used throughout). Since the code presented in the text almost always requires the use of previously introduced programming constructs, diligent students also acquire basic programming abilities in R. The book is intended for advanced undergraduate and graduate students in any discipline, although the focus is on linguistics, psychology, and cognitive science. It is designed for self-instruction, but it can also be used as a textbook for a first course on statistics. Earlier versions of the book have been used in undergraduate and graduate courses in Europe and the US. ”Vasishth and Broe have written an attractive introduction to the foundations of statistics. It is concise, surprisingly comprehensive, self-contained and yet quite accessible. Highly recommended.” Harald Baayen, Professor of Linguistics, University of Alberta, Canada ”By using the text students not only learn to do the specific things outlined in the book, they also gain a skill set that empowers them to explore new areas that lie beyond the book’s coverage.” Colin Phillips, Professor of Linguistics, University of Maryland, USA
Book Synopsis Statistical Foundations of Data Science by : Jianqing Fan
Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Book Synopsis Foundations of Statistics for Data Scientists by : Alan Agresti
Download or read book Foundations of Statistics for Data Scientists written by Alan Agresti and published by CRC Press. This book was released on 2021-11-22 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.
Book Synopsis Foundations of Statistical Natural Language Processing by : Christopher Manning
Download or read book Foundations of Statistical Natural Language Processing written by Christopher Manning and published by MIT Press. This book was released on 1999-05-28 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.
Book Synopsis Foundations of Applied Statistical Methods by : Hang Lee
Download or read book Foundations of Applied Statistical Methods written by Hang Lee and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a text in methods of applied statistics for researchers who design and conduct experiments, perform statistical inference, and write technical reports. These research activities rely on an adequate knowledge of applied statistics. The reader both builds on basic statistics skills and learns to apply it to applicable scenarios without over-emphasis on the technical aspects. Demonstrations are a very important part of this text. Mathematical expressions are exhibited only if they are defined or intuitively comprehensible. This text may be used as a self review guidebook for applied researchers or as an introductory statistical methods textbook for students not majoring in statistics. Discussion includes essential probability models, inference of means, proportions, correlations and regressions, methods for censored survival time data analysis, and sample size determination. The author has over twenty years of experience on applying statistical methods to study design and data analysis in collaborative medical research setting as well as on teaching. He received his PhD from University of Southern California Department of Preventive Medicine, received a post-doctoral training at Harvard Department of Biostatistics, has held faculty appointments at UCLA School of Medicine and Harvard Medical School, and currently a biostatistics faculty member at Massachusetts General Hospital and Harvard Medical School in Boston, Massachusetts, USA.
Book Synopsis Foundations of Data Science by : Avrim Blum
Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.
Book Synopsis Foundations of Agnostic Statistics by : Peter M. Aronow
Download or read book Foundations of Agnostic Statistics written by Peter M. Aronow and published by Cambridge University Press. This book was released on 2019-01-31 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an introduction to modern statistical theory for social and health scientists while invoking minimal modeling assumptions.
Book Synopsis The Logical Foundations of Statistical Interference by : Henry Ely Kyburg
Download or read book The Logical Foundations of Statistical Interference written by Henry Ely Kyburg and published by Springer Science & Business Media. This book was released on 1974-07-31 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: When his uncle, Michael, dies of AIDS, Joel's dreams and thoughts of Michael keep his memory alive.
Book Synopsis Foundations in Statistics by : Victoria Mantzopoulos
Download or read book Foundations in Statistics written by Victoria Mantzopoulos and published by . This book was released on 2022-06 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: 4th Edition
Book Synopsis Statistical Foundations, Reasoning and Inference by : Göran Kauermann
Download or read book Statistical Foundations, Reasoning and Inference written by Göran Kauermann and published by Springer Nature. This book was released on 2021-09-30 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Book Synopsis Probabilistic Foundations of Statistical Network Analysis by : Harry Crane
Download or read book Probabilistic Foundations of Statistical Network Analysis written by Harry Crane and published by CRC Press. This book was released on 2018-04-17 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE.
Book Synopsis Statistical Data Analytics by : Walter W. Piegorsch
Download or read book Statistical Data Analytics written by Walter W. Piegorsch and published by John Wiley & Sons. This book was released on 2015-12-21 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solutions Manual to accompany Statistical Data Analytics: Foundations for Data Mining, Informatics, and Knowledge Discovery A comprehensive introduction to statistical methods for data mining and knowledge discovery. Extensive solutions using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others.
Book Synopsis The Conceptual Foundations of the Statistical Approach in Mechanics by : Paul Ehrenfest
Download or read book The Conceptual Foundations of the Statistical Approach in Mechanics written by Paul Ehrenfest and published by Courier Corporation. This book was released on 2014-11-12 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic 1912 article reformulated the foundations of the statistical approach in mechanics. Largely still valid, the treatment covers older formulation of statistico-mechanical investigations, modern formulation of kineto-statistics of the gas model, and more. 1959 edition.
Book Synopsis Learning to Read and Write in One Elementary School by : Connie Juel
Download or read book Learning to Read and Write in One Elementary School written by Connie Juel and published by Springer Science & Business Media. This book was released on 1993-10-22 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book presents a four-year longitudinal study of the literacy development of children attending an Austin, Texas area elementary school. The reading and writing development of this microcosm of "at-risk" children was followed as they progressed from first through fourth grade. The author poses the question, "What skills and abilities of the child, and what classroom factors, appear to foster literacy development?" Included here are the author's models of reading and writing acquisition, and application of these models to six children: three with literacy problems and three with successful literacy development. Interviews with the children are presented along with measures of their cognitive development and skills, samples of their reading and writing from and throughout the four year study, and an examination of their successes and failures in relations to the models presented in earlier chapters. Additionally, one chapter examines school-related factors that may play a role in the children's reading development. The book is intended for graduate students at all levels and literacy researchers who are interested in the process of literacy acquisition as it occurs in the school setting.