Foundations of Differential Geometry, Volume 2

Download Foundations of Differential Geometry, Volume 2 PDF Online Free

Author :
Publisher : University of Texas Press
ISBN 13 : 9780471157328
Total Pages : 492 pages
Book Rating : 4.1/5 (573 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Differential Geometry, Volume 2 by : Shoshichi Kobayashi

Download or read book Foundations of Differential Geometry, Volume 2 written by Shoshichi Kobayashi and published by University of Texas Press. This book was released on 1996-02-22 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume introduction to differential geometry, part of Wiley's popular Classics Library, lays the foundation for understanding an area of study that has become vital to contemporary mathematics. It is completely self-contained and will serve as a reference as well as a teaching guide. Volume 1 presents a systematic introduction to the field from a brief survey of differentiable manifolds, Lie groups and fibre bundles to the extension of local transformations and Riemannian connections. The second volume continues with the study of variational problems on geodesics through differential geometric aspects of characteristic classes. Both volumes familiarize readers with basic computational techniques.

Foundations of Differential Geometry, Volume 2

Download Foundations of Differential Geometry, Volume 2 PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471157325
Total Pages : 500 pages
Book Rating : 4.4/5 (711 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Differential Geometry, Volume 2 by : Shoshichi Kobayashi

Download or read book Foundations of Differential Geometry, Volume 2 written by Shoshichi Kobayashi and published by John Wiley & Sons. This book was released on 1996-02-22 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume introduction to differential geometry, part of Wiley's popular Classics Library, lays the foundation for understanding an area of study that has become vital to contemporary mathematics. It is completely self-contained and will serve as a reference as well as a teaching guide. Volume 1 presents a systematic introduction to the field from a brief survey of differentiable manifolds, Lie groups and fibre bundles to the extension of local transformations and Riemannian connections. The second volume continues with the study of variational problems on geodesics through differential geometric aspects of characteristic classes. Both volumes familiarize readers with basic computational techniques.

Differential Geometry of Complex Vector Bundles

Download Differential Geometry of Complex Vector Bundles PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400858682
Total Pages : 317 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Complex Vector Bundles by : Shoshichi Kobayashi

Download or read book Differential Geometry of Complex Vector Bundles written by Shoshichi Kobayashi and published by Princeton University Press. This book was released on 2014-07-14 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Fundamentals of Differential Geometry

Download Fundamentals of Differential Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461205417
Total Pages : 553 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Differential Geometry by : Serge Lang

Download or read book Fundamentals of Differential Geometry written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER

Complex Geometry

Download Complex Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540212904
Total Pages : 336 pages
Book Rating : 4.2/5 (129 download)

DOWNLOAD NOW!


Book Synopsis Complex Geometry by : Daniel Huybrechts

Download or read book Complex Geometry written by Daniel Huybrechts and published by Springer Science & Business Media. This book was released on 2005 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

Foundations of Differentiable Manifolds and Lie Groups

Download Foundations of Differentiable Manifolds and Lie Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475717997
Total Pages : 283 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Differentiable Manifolds and Lie Groups by : Frank W. Warner

Download or read book Foundations of Differentiable Manifolds and Lie Groups written by Frank W. Warner and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

New Foundations for Physical Geometry

Download New Foundations for Physical Geometry PDF Online Free

Author :
Publisher :
ISBN 13 : 0198701306
Total Pages : 374 pages
Book Rating : 4.1/5 (987 download)

DOWNLOAD NOW!


Book Synopsis New Foundations for Physical Geometry by : Tim Maudlin

Download or read book New Foundations for Physical Geometry written by Tim Maudlin and published by . This book was released on 2014-02 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319550845
Total Pages : 358 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Loring W. Tu

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Foundations of Differential Geometry, Volume 2

Download Foundations of Differential Geometry, Volume 2 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 496 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Differential Geometry, Volume 2 by : Shoshichi Kobayashi

Download or read book Foundations of Differential Geometry, Volume 2 written by Shoshichi Kobayashi and published by . This book was released on 1963 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume introduction to differential geometry, part of Wiley's popular Classics Library, lays the foundation for understanding an area of study that has become vital to contemporary mathematics. It is completely self-contained and will serve as a reference as well as a teaching guide. Volume 1 presents a systematic introduction to the field from a brief survey of differentiable manifolds, Lie groups and fibre bundles to the extension of local transformations and Riemannian connections. The second volume continues with the study of variational problems on geodesics through differential geometric aspects of characteristic classes. Both volumes familiarize readers with basic computational techniques.

Transformation Groups in Differential Geometry

Download Transformation Groups in Differential Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642619819
Total Pages : 192 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Transformation Groups in Differential Geometry by : Shoshichi Kobayashi

Download or read book Transformation Groups in Differential Geometry written by Shoshichi Kobayashi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.

Differential Geometry of Three Dimensions

Download Differential Geometry of Three Dimensions PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316606953
Total Pages : 253 pages
Book Rating : 4.3/5 (166 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Three Dimensions by : C. E. Weatherburn

Download or read book Differential Geometry of Three Dimensions written by C. E. Weatherburn and published by Cambridge University Press. This book was released on 1927 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1930, as the second of a two-part set, this textbook contains a vectorial treatment of geometry.

Geometry from a Differentiable Viewpoint

Download Geometry from a Differentiable Viewpoint PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521116074
Total Pages : 375 pages
Book Rating : 4.5/5 (211 download)

DOWNLOAD NOW!


Book Synopsis Geometry from a Differentiable Viewpoint by : John McCleary

Download or read book Geometry from a Differentiable Viewpoint written by John McCleary and published by Cambridge University Press. This book was released on 2013 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly revised second edition of a textbook for a first course in differential/modern geometry that introduces methods within a historical context.

The Structure and Interpretation of the Standard Model

Download The Structure and Interpretation of the Standard Model PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080498302
Total Pages : 265 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis The Structure and Interpretation of the Standard Model by : Gordon McCabe

Download or read book The Structure and Interpretation of the Standard Model written by Gordon McCabe and published by Elsevier. This book was released on 2011-08-30 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a philosophically informed and mathematically rigorous introduction to the 'standard model' of particle physics. The standard model is the currently accepted and experimentally verified model of all the particles and interactions in our universe. All the elementary particles in our universe, and all the non-gravitational interactions -the strong nuclear force, the weak nuclear force, and the electromagnetic force - are collected together and, in the case of the weak and electromagnetic forces, unified in the standard model. Rather than presenting the calculational recipes favored in most treatments of the standard model, this text focuses upon the elegant mathematical structures and the foundational concepts of the standard model.· Combines an exposition of the philosophical foundations and rigorous mathematical structure of particle physics· Demonstrates the standard model with elegant mathematics, rather than a medley of computational recipes· Promotes a group-theoretical and fibre-bundle approach to the standard model, rather than the Lagrangian approach favoured by calculationalists· Explains the different approaches to particle physics and the standard model which can be found within the literature

Introduction to Differential Geometry

Download Introduction to Differential Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3662643405
Total Pages : 426 pages
Book Rating : 4.6/5 (626 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Differential Geometry by : Joel W. Robbin

Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Handbook of Differential Geometry, Volume 1

Download Handbook of Differential Geometry, Volume 1 PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080532837
Total Pages : 1067 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Differential Geometry, Volume 1 by : F.J.E. Dillen

Download or read book Handbook of Differential Geometry, Volume 1 written by F.J.E. Dillen and published by Elsevier. This book was released on 1999-12-16 with total page 1067 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.

Geometry and Light

Download Geometry and Light PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486134903
Total Pages : 290 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Light by : Ulf Leonhardt

Download or read book Geometry and Light written by Ulf Leonhardt and published by Courier Corporation. This book was released on 2012-07-06 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and graduate students of engineering, physics, and mathematics and scientific researchers of all types, this is the first authoritative text on invisibility and the science behind it. More than 100 full-color illustrations, plus exercises with solutions. 2010 edition.

Manifolds and Differential Geometry

Download Manifolds and Differential Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821848151
Total Pages : 690 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Manifolds and Differential Geometry by : Jeffrey Marc Lee

Download or read book Manifolds and Differential Geometry written by Jeffrey Marc Lee and published by American Mathematical Soc.. This book was released on 2009 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.