Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Foundations Of Agnostic Statistics
Download Foundations Of Agnostic Statistics full books in PDF, epub, and Kindle. Read online Foundations Of Agnostic Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Foundations of Agnostic Statistics by : Peter M. Aronow
Download or read book Foundations of Agnostic Statistics written by Peter M. Aronow and published by Cambridge University Press. This book was released on 2019-01-31 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an introduction to modern statistical theory for social and health scientists while invoking minimal modeling assumptions.
Book Synopsis Foundations of Data Science by : Avrim Blum
Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Book Synopsis Foundations of Statistics by : D.G. Rees
Download or read book Foundations of Statistics written by D.G. Rees and published by CRC Press. This book was released on 1987-09-01 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides a through, straightforward first course on basics statistics. Emphasizing the application of theory, it contains 200 fully worked examples and supplies exercises in each chapter-complete with hints and answers.
Book Synopsis Elementary Probability for Applications by : Rick Durrett
Download or read book Elementary Probability for Applications written by Rick Durrett and published by Cambridge University Press. This book was released on 2009-07-31 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This clear and lively introduction to probability theory concentrates on the results that are the most useful for applications, including combinatorial probability and Markov chains. Concise and focused, it is designed for a one-semester introductory course in probability for students who have some familiarity with basic calculus. Reflecting the author's philosophy that the best way to learn probability is to see it in action, there are more than 350 problems and 200 examples. The examples contain all the old standards such as the birthday problem and Monty Hall, but also include a number of applications not found in other books, from areas as broad ranging as genetics, sports, finance, and inventory management.
Book Synopsis Modern Mathematical Statistics with Applications by : Jay L. Devore
Download or read book Modern Mathematical Statistics with Applications written by Jay L. Devore and published by Springer Nature. This book was released on 2021-04-29 with total page 981 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 3rd edition of Modern Mathematical Statistics with Applications tries to strike a balance between mathematical foundations and statistical practice. The book provides a clear and current exposition of statistical concepts and methodology, including many examples and exercises based on real data gleaned from publicly available sources. Here is a small but representative selection of scenarios for our examples and exercises based on information in recent articles: Use of the “Big Mac index” by the publication The Economist as a humorous way to compare product costs across nations Visualizing how the concentration of lead levels in cartridges varies for each of five brands of e-cigarettes Describing the distribution of grip size among surgeons and how it impacts their ability to use a particular brand of surgical stapler Estimating the true average odometer reading of used Porsche Boxsters listed for sale on www.cars.com Comparing head acceleration after impact when wearing a football helmet with acceleration without a helmet Investigating the relationship between body mass index and foot load while running The main focus of the book is on presenting and illustrating methods of inferential statistics used by investigators in a wide variety of disciplines, from actuarial science all the way to zoology. It begins with a chapter on descriptive statistics that immediately exposes the reader to the analysis of real data. The next six chapters develop the probability material that facilitates the transition from simply describing data to drawing formal conclusions based on inferential methodology. Point estimation, the use of statistical intervals, and hypothesis testing are the topics of the first three inferential chapters. The remainder of the book explores the use of these methods in a variety of more complex settings. This edition includes many new examples and exercises as well as an introduction to the simulation of events and probability distributions. There are more than 1300 exercises in the book, ranging from very straightforward to reasonably challenging. Many sections have been rewritten with the goal of streamlining and providing a more accessible exposition. Output from the most common statistical software packages is included wherever appropriate (a feature absent from virtually all other mathematical statistics textbooks). The authors hope that their enthusiasm for the theory and applicability of statistics to real world problems will encourage students to pursue more training in the discipline.
Book Synopsis Foundations of Machine Learning, second edition by : Mehryar Mohri
Download or read book Foundations of Machine Learning, second edition written by Mehryar Mohri and published by MIT Press. This book was released on 2018-12-25 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.
Book Synopsis Public Policy in an Uncertain World by : Charles F. Manski
Download or read book Public Policy in an Uncertain World written by Charles F. Manski and published by Harvard University Press. This book was released on 2013-02-14 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manski argues that public policy is based on untrustworthy analysis. Failing to account for uncertainty in an uncertain world, policy analysis routinely misleads policy makers with expressions of certitude. Manski critiques the status quo and offers an innovation to improve both how policy research is conducted and how it is used by policy makers.
Book Synopsis OpenIntro Statistics by : David Diez
Download or read book OpenIntro Statistics written by David Diez and published by . This book was released on 2015-07-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.
Download or read book Text as Data written by Justin Grimmer and published by Princeton University Press. This book was released on 2022-01-04 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide for using computational text analysis to learn about the social world From social media posts and text messages to digital government documents and archives, researchers are bombarded with a deluge of text reflecting the social world. This textual data gives unprecedented insights into fundamental questions in the social sciences, humanities, and industry. Meanwhile new machine learning tools are rapidly transforming the way science and business are conducted. Text as Data shows how to combine new sources of data, machine learning tools, and social science research design to develop and evaluate new insights. Text as Data is organized around the core tasks in research projects using text—representation, discovery, measurement, prediction, and causal inference. The authors offer a sequential, iterative, and inductive approach to research design. Each research task is presented complete with real-world applications, example methods, and a distinct style of task-focused research. Bridging many divides—computer science and social science, the qualitative and the quantitative, and industry and academia—Text as Data is an ideal resource for anyone wanting to analyze large collections of text in an era when data is abundant and computation is cheap, but the enduring challenges of social science remain. Overview of how to use text as data Research design for a world of data deluge Examples from across the social sciences and industry
Book Synopsis Demystifying Causal Inference by : Vikram Dayal
Download or read book Demystifying Causal Inference written by Vikram Dayal and published by Springer Nature. This book was released on 2023-09-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to causal inference and data analysis with R, specifically for a public policy audience. It aims to demystify these topics by presenting them through practical policy examples from a range of disciplines. It provides a hands-on approach to working with data in R using the popular tidyverse package. High quality R packages for specific causal inference techniques like ggdag, Matching, rdrobust, dosearch etc. are used in the book. The book is in two parts. The first part begins with a detailed narrative about John Snow’s heroic investigations into the cause of cholera. The chapters that follow cover basic elements of R, regression, and an introduction to causality using the potential outcomes framework and causal graphs. The second part covers specific causal inference methods, including experiments, matching, panel data, difference-in-differences, regression discontinuity design, instrumental variables and meta-analysis, with the help of empirical case studies of policy issues. The book adopts a layered approach that makes it accessible and intuitive, using helpful concepts, applications, simulation, and data graphs. Many public policy questions are inherently causal, such as the effect of a policy on a particular outcome. Hence, the book would not only be of interest to students in public policy and executive education, but also to anyone interested in analysing data for application to public policy.
Book Synopsis Target Estimation and Adjustment Weighting for Survey Nonresponse and Sampling Bias by : Devin Caughey
Download or read book Target Estimation and Adjustment Weighting for Survey Nonresponse and Sampling Bias written by Devin Caughey and published by Cambridge University Press. This book was released on 2020-10-22 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: We elaborate a general workflow of weighting-based survey inference, decomposing it into two main tasks. The first is the estimation of population targets from one or more sources of auxiliary information. The second is the construction of weights that calibrate the survey sample to the population targets. We emphasize that these tasks are predicated on models of the measurement, sampling, and nonresponse process whose assumptions cannot be fully tested. After describing this workflow in abstract terms, we then describe in detail how it can be applied to the analysis of historical and contemporary opinion polls. We also discuss extensions of the basic workflow, particularly inference for causal quantities and multilevel regression and poststratification.
Book Synopsis Integrating Inferences by : Macartan Humphreys
Download or read book Integrating Inferences written by Macartan Humphreys and published by Cambridge University Press. This book was released on 2023-10-31 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops a new approach to the use of causal models for qualitative and mixed-method research design and causal inference.
Book Synopsis Research Design in the Social Sciences by : Graeme Blair
Download or read book Research Design in the Social Sciences written by Graeme Blair and published by Princeton University Press. This book was released on 2023-06-27 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the-art approach to evaluating research design for students and scholars across the social sciences Assessing the properties of research designs before implementing them can be tricky for even the most seasoned researchers. This book provides a powerful framework—Model, Inquiry, Data Strategy, and Answer Strategy, or MIDA—for describing any empirical research design in the social sciences. MIDA enables you to characterize the key analytic features of observational and experimental designs, qualitative and quantitative designs, and descriptive and causal designs. An accompanying algorithm lets you declare designs in the MIDA framework, diagnose properties such as bias and precision, and redesign features like sampling, assignment, measurement, and estimation procedures. Research Design in the Social Sciences is an essential tool kit for the entire life of a research project, from planning and realization of design to the integration of your results into the scientific literature. A must-have resource for current and future researchers who want to learn about the properties of their designs before they implement them Includes a library of the most common designs in the social sciences Provides a complete declaration of the canonical design for each library entry, describes the circumstances under which the design can be strong or weak, and explores the consequences of the choices under the research designer’s control Accompanied by online resources that can be used in conjunction with the book An ideal textbook for graduate students and advanced undergraduates
Book Synopsis Doing Meta-Analysis with R by : Mathias Harrer
Download or read book Doing Meta-Analysis with R written by Mathias Harrer and published by CRC Press. This book was released on 2021-09-15 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
Book Synopsis The Algorithmic Foundations of Differential Privacy by : Cynthia Dwork
Download or read book The Algorithmic Foundations of Differential Privacy written by Cynthia Dwork and published by . This book was released on 2014 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition. The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power -- certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed. The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic.
Book Synopsis Statistical Foundations of Actuarial Learning and its Applications by : Mario V. Wüthrich
Download or read book Statistical Foundations of Actuarial Learning and its Applications written by Mario V. Wüthrich and published by Springer Nature. This book was released on 2022-11-22 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice. Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features. Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how to interpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.
Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz
Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.