Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Flexible Generation Of Picosecond Laser Pulses In The Infrared And Green Spectral Range By Gain Switching Of Semiconductor Lasers
Download Flexible Generation Of Picosecond Laser Pulses In The Infrared And Green Spectral Range By Gain Switching Of Semiconductor Lasers full books in PDF, epub, and Kindle. Read online Flexible Generation Of Picosecond Laser Pulses In The Infrared And Green Spectral Range By Gain Switching Of Semiconductor Lasers ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Flexible Generation of Picosecond Laser Pulses in the Infrared and Green Spectral Range by Gain-Switching of Semiconductor Lasers by : Sina Riecke
Download or read book Flexible Generation of Picosecond Laser Pulses in the Infrared and Green Spectral Range by Gain-Switching of Semiconductor Lasers written by Sina Riecke and published by Cuvillier Verlag. This book was released on 2011-03-15 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Picosecond laser pulses find diverse applications for example in material processing as well as in analysis and sensing. Fluorescence lifetime spectroscopy in particular requires pulses with variable repetition rate and moderate pulse energy. While suitable pulses in the red and blue spectral range can be provided by gain-switched laser diodes, the generation of green laser pulses requires a more elaborate setup based on second harmonic generation. The starting point is a gain-switched infrared distributed-feedback laser diode. The optimization of the laser design and the operating conditions allows to generate spectrally narrow picosecond pulses with a peak power above 1 W. Different gain media are compared for further amplification of these pulses, and options for the miniaturization of the master-oscillator power-amplifier system are explored. The resulting intense infrared pulses are then used for second harmonic generation of green picoseconds pulses. Their peak power of above 5 W exceeds all previous green pulse sources with variable repetition rate. In terms of pulse energy and background suppression, the reported green pulses are thus ideally suited for fluorescence lifetime spectroscopy
Book Synopsis A deep ultraviolet laser light source by frequency doubling of GaN based external cavity diode laser radiation by : Norman Ruhnke
Download or read book A deep ultraviolet laser light source by frequency doubling of GaN based external cavity diode laser radiation written by Norman Ruhnke and published by Cuvillier Verlag. This book was released on 2022-05-13 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compact and portable laser light source emitting in the wavelength range between 210 nm and 230 nm would enable numerous applications outside of laboratory environments, such as sterilization and disinfection of medical equipment, water purification or gas and air analysis using absorption spectroscopy. Such a source is also highly attractive for the identification and quantification of proteins and biomolecules by means of laser-induced fluorescence or Raman spectroscopy. In this thesis, a novel concept to realize such a compact and portable laser light source with low power consumption and an emission around 222 nm is investigated. The developed concept is based on single-pass frequency doubling of a commercially available high-power GaN laser diode emitting in the blue spectral range. Due to the low frequency doubling conversion efficiencies in this wavelength range of about 10-4 W-1, a laser diode with high optical output power above 1 W is required as pump source. Moreover, it has to exhibit narrowband emission in the range of the acceptance bandwidth of the applied nonlinear BBO crystal. Since GaN-based high-power laser diodes typically show broad emission spectra of Δλ = 1…2 nm, stabilizing and narrowing their wavelength by using external wavelength-selective elements is investigated and presented for the first time. With the understanding for the novel concept gained in this work, a compact ultraviolet laser light source was realized. It has a power consumption of less than 10 W and is exceptionally robust due to its immoveable components. The demonstrated output power of 160 μW enables numerous industrial and everyday applications for which previous laser systems have been too complex and overly cost- and energy-intensive.
Book Synopsis Two-step MOVPE, in-situ etching and buried implantation: applications to the realization of GaAs laser diodes by : Pietro della Casa
Download or read book Two-step MOVPE, in-situ etching and buried implantation: applications to the realization of GaAs laser diodes written by Pietro della Casa and published by Cuvillier Verlag. This book was released on 2021-03-25 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is about two-step epitaxial growth using metalorganic vapor-phase epitaxy (MOVPE) for the realization of edge-emitting near-infrared laser diodes. The fabricated gallium arsenide-based devices fall into two categories: high-power lasers (watt range, multimodal) and tunable lasers (milliwatt range, monomodal). Common to both cases is that surface contamination – particularly that due to oxygen – needs to be removed before regrowth. Thus, in-situ etching with carbon tetrabromide (CBr4) is first studied. The experimental results include kinetic data, the effects of different etching conditions as well as substrate characteristics, and the effectiveness in reducing surface contamination. These investigations pave the way to devices based on 2-step epitaxy combined with in-situ etching. Correspondingly, thermally-tuned SG-DBR lasers operating around 975 nm have been successfully realized, obtaining a tuning range of 21 nm. In addition, the possibility of using electronic tuning in similar devices has been explored. High-power broad-area lasers have also been realized, using two-step epitaxy combined with ex-situ and in-situ etching, to create a buried, shallow “mesa” containing the active zone. This approach allows introducing lateral electrical and optical confinement, and – simultaneously – non-absorbing mirrors at the laser facets. Additionally, a different strategy to create a buried current aperture is presented, which is based on ion implantation followed by epitaxial regrowth. This enables to improve device performance and simultaneously introduce non-absorbing mirrors at the facets with correspondingly increased reliability.
Book Synopsis Spectroscopic Applications of Terahertz Quantum-Cascade Lasers by : Tasmim Alam
Download or read book Spectroscopic Applications of Terahertz Quantum-Cascade Lasers written by Tasmim Alam and published by Cuvillier Verlag. This book was released on 2020-10-29 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade lasers (QCLs) are attractive for high-resolution spectroscopy because they can provide high power and a narrow linewidth. They are particularly promising in the terahertz (THz) range since they can be used as local oscillators for heterodyne detection as well as transmitters for direct detection. However, THz QCL-based technologies are still under development and are limited by the lack of frequency tunability as well as the frequency and output power stability for free-running operation. In this dissertation, frequency tuning and linewidth of THz QCLs are studied in detail by using rotational spectroscopic features of molecular species. In molecular spectroscopy, the Doppler eff ect broadens the spectral lines of molecules in the gas phase at thermal equilibrium. Saturated absorption spectroscopy has been performed that allows for sub-Doppler resolution of the spectral features. One possible application is QCL frequency stabilization based on the Lamb dip. Since the tunability of the emission frequency is an essential requirement to use THz QCL for high-resolution spectroscopy, a new method has been developed that relies on near-infrared (NIR) optical excitation of the QCL rear-facet. A wide tuning range has been achieved by using this approach. The scheme is straightforward to implement, and the approach can be readily applied to a large class of THz QCLs. The frequency and output stability of the local oscillator has a direct impact on the performance and consistency of the heterodyne spectroscopy. A technique has been developed for a simultaneous stabilization of the frequency and output power by taking advantage of the frequency and power regulation by NIR excitation. The results presented in this thesis will enable the routine use of THz QCLs for spectroscopic applications in the near future.
Book Synopsis Development and analysis of diode laser ns-MOPA systems for high peak power application by : Thi Nghiem Vu
Download or read book Development and analysis of diode laser ns-MOPA systems for high peak power application written by Thi Nghiem Vu and published by Cuvillier Verlag. This book was released on 2017-02-14 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work aims at designing and characterizing diode laser based master oscillator power amplifier (MOPA) systems, which are targeted to be implemented into micro light detection and ranging (LIDAR) or differential absorption LIDAR (DIAL) systems for water vapor and aerosol detections. These light sources operate in the ns-pulse regime at a repetition rate of 25 kHz, leading to a resolution in the meter range in an altitude of 6 km. The monolithic MOPA, where Master Oscillator (MO) and Power Amplifier (PA) are integrated on one single chip, operates at 1064 nm wavelength. A peak power of 16.3 W with a pulse width of 3 ns was obtained. A spectral linewidth of about 150 pm and a side mode suppression ratio (SMSR) of 30 dB was observed. A ratio of 9% between the amplified spontaneous emission (ASE) and the laser was estimated. These spectral properties fulfill the requirements for aerosol detection. The hybrid MOPA systems have separate chips for MO and PA. Different hybrid MOPA systems provide a stabilized wavelength at 1064 nm, a tunable wavelength around 975 nm and a dual wavelength around 964 nm. They therefore enable to detect a well-defined absorption line, scan over absorption line and switch between on/off line in DIAL applications, respectively. Their spectral linewidth is below 10 pm, limited by the resolution of the spectrum analyzer. An SMSR of more than 50 dB for the MO and of more than 37 dB for the whole MOPA was reached. A ratio between ASE and laser below 1% was estimated. These spectral properties meet the requirements for water vapor absorption lines detection at atmospheric condition. Diode laser based MOPA systems were therefore proven to be potential light sources for micro-pulse-LIDAR systems – the basis for a new generation of ultra-compact, low-cost systems.
Book Synopsis A compact mode-locked diode laser system for high precision frequency comparison experiments (Band 64) by : Heike Christopher
Download or read book A compact mode-locked diode laser system for high precision frequency comparison experiments (Band 64) written by Heike Christopher and published by Cuvillier Verlag. This book was released on 2021-04-09 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical frequency combs (OFC) have revolutionized various applications in applied and fundamental sciences that rely on the determination of absolute optical frequencies and frequency differences. The latter requires only stabilization of the spectral distance between the individual comb lines of the OFC, allowing to tailor and reduce system complexity of the OFC generator (OFCG). One such application is the quantum test of the universality of free fall within the QUANTUS experimental series. Within the test, the rate of free fall of two atomic species, Rb and K, in micro-gravity will be compared. The aim of this thesis was the development of a highly compact, robust, and space-suitable diode laser-based OFCG with a mode-locked optical spectrum in the wavelength range around 780 nm. A diode laser-based OFCG was developed, which exceeds the requirements with a spectral bandwidth > 16 nm at 20 dBc, a comb line optical power > 650 nW (at 20 dBc), a pulse repetition rate of 3.4 GHz, and an RF linewidth of the free-running pulse repetition rate < 10 kHz. To realize a proof-of-concept demonstrator module, the diode laser-based OFCG was hybrid-integrated into a space-suitable technology platform that has been developed for future QUANTUS experiments. Proof of sufficient RF stability of the OFCG was provided by stabilizing the pulse repetition rate to an external RF reference. This resulted in a stabilized pulse repetition rate with an RF linewidth smaller than 1.4 Hz (resolution limited), thus exceeding the requirement. The developed diode laser-based OFCG represents an important step towards an improved comparison of the rate of free fall of Rb and K quantum gases within the QUANTUS experiments in micro-gravity.
Book Synopsis Design, simulation and analysis of laterally-longitudinally non-uniform edge-emitting GaAs-based diode lasers (Band 73) by : Jan-Philipp Koester
Download or read book Design, simulation and analysis of laterally-longitudinally non-uniform edge-emitting GaAs-based diode lasers (Band 73) written by Jan-Philipp Koester and published by Cuvillier Verlag. This book was released on 2023-09-19 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edge-emitting quantum-well diode lasers based on GaAs combine a high conversion efficiency, a wide range of emission wavelengths covering a span from 630 nm to 1180 nm, and the ability to achieve high output powers. The often used longitudinal-invariant Fabry-Pérot-type resonators are easy to design but often lead to functionality or performance limitations. In this work, the application of laterally-longitudinally non-uniform resonator configurations is explored as a way to reduce unwanted and performance-limiting effects. The investigations are carried out on existing and entirely newly developed laser designs using dedicated simulation tools. These include a sophisticated time-dependent laser simulator based on a traveling-wave model of the optical fields in the lateral-longitudinal plane and a Maxwell solver based on the eigenmode expansion method for the simulation of passive waveguides. Whenever possible, the simulation results are compared with experimental data. Based on this approach, three fundamentally different laser types are investigated: • Dual-wavelength lasers emitting two slightly detuned wavelengths around 784 nm out of a single aperture • Ridge-waveguide lasers with tapered waveguide and contact layouts that emit light of a wavelength of around 970 nm • Broad-area lasers with slightly tapered contact layouts emitting at 910 nm The results of this thesis underline the potential of lateral-longitudinal non-uniform laser designs to increase selected aspects of device performance, including beam quality, spectral stability, and output power.
Book Synopsis Analysis of Spatio-Temporal Phenomena in High-Brightness Diode Lasers using Numerical Simulations by : Anissa Zeghuzi
Download or read book Analysis of Spatio-Temporal Phenomena in High-Brightness Diode Lasers using Numerical Simulations written by Anissa Zeghuzi and published by Cuvillier Verlag. This book was released on 2020-10-22 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Broad-area lasers are edge-emitting semiconductor lasers with a wide lateral emission aperture. This feature enables high output powers but also diminishes the lateral beam quality and results in their inherently non-stationary behavior. Research in the area is driven by application, and the main objective is to increase the brightness, which includes both output power and lateral beam quality. To understand the underlying spatio-temporal phenomena and to apply this knowledge in order to reduce costs for brightness optimization, a self-consistent simulation tool taking all essential processes into account is vital. Firstly, in this work a quasi-three-dimensional opto-electronic and thermal model is presented that describes essential qualitative characteristics of real devices well. Time-dependent traveling-wave equations are utilized to characterize the inherently non-stationary optical fields, which are coupled to dynamic rate equations for the excess carriers in the active region. This model is extended by an injection-current-density model to accurately include lateral current spreading and spatial hole burning. Furthermore, a temperature model is presented that includes short-time local heating near the active region as well as the formation of a stationary temperature profile. Secondly, the reasons of brightness degradation, i.e. the origins of power saturation and the spatially modulated field profile, are investigated. And lastly, designs that mitigate those effects limiting the lateral brightness under pulsed and continuous-wave operation are discussed. Amongst those designs a novel “chessboard laser” is presented that utilizes longitudinal-lateral gain-loss modulation and an additional phase tailoring to obtain a very low far-field divergence.
Book Synopsis AlN base layers for UV LEDs by : Sebastian Walde
Download or read book AlN base layers for UV LEDs written by Sebastian Walde and published by Cuvillier Verlag. This book was released on 2021-06-22 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: To enable the fabrication of high performance ultraviolet (UV) light-emitting diodes (LEDs) this work aims at improving the quality of AlN base layers on sapphire substrates. The main issues for UV LEDs are still a limited internal quantum efficiency due to a high amount of threading dislocations along with a limited light extraction efficiency due to total internal reflection at the AlN/sapphire interface. Therefore, high-temperature annealing of AlN/sapphire layers and growth on nanopatterned sapphire substrates were comprehensively investigated. High-temperature annealing was applied to AlN layers of different strain and thickness grown by metalorganic vapour phase epitaxy (MOVPE). The threading dislocation density could be successfully reduced by more than one order of magnitude down to 6 × 108 cm-2. Wave optical simulations of UV LEDs on nanopatterned sapphire substrates (NPSS) were conducted and showed a potential increase in light extraction efficiency compared to a planar substrate. The optimized MOVPE growth process on sapphire nanopillars and sapphire nanoholes resulted in a fully coalesced and atomically smooth AlN surface. The threading dislocation density was reduced to 1 ×109 cm-2 for AlN on both nanopillars and nanoholes. UVC LEDs emitting at 265 nm wavelength were grown on top of the developed templates. Increased internal efficiency was obtained by reduced dislocation density and more efficient light extraction was achieved on NPSS in case of a transparent heterostructure and reflective contacts. Thus, the developed templates yield considerable improvement in light output compared to conventional templates.
Book Synopsis Government Reports Announcements & Index by :
Download or read book Government Reports Announcements & Index written by and published by . This book was released on 1996 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis International Aerospace Abstracts by :
Download or read book International Aerospace Abstracts written by and published by . This book was released on 1997 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Femtosecond Optical Frequency Comb: Principle, Operation and Applications by : Jun Ye
Download or read book Femtosecond Optical Frequency Comb: Principle, Operation and Applications written by Jun Ye and published by Springer Science & Business Media. This book was released on 2006-06-15 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few years, there has been a convergence between the fields of ultrafast science, nonlinear optics, optical frequency metrology, and precision laser spectroscopy. These fields have been developing largely independently since the birth of the laser, reaching remarkable levels of performance. On the ultrafast frontier, pulses of only a few cycles long have been produced, while in optical spectroscopy, the precision and resolution have reached one part in Although these two achievements appear to be completely disconnected, advances in nonlinear optics provided the essential link between them. The resulting convergence has enabled unprecedented advances in the control of the electric field of the pulses produced by femtosecond mode-locked lasers. The corresponding spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as “femtosecond comb technology. ” They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. The historical background for these developments is provided in the Foreword by two of the pioneers of laser spectroscopy, John Hall and Theodor Hänsch. Indeed the developments described in this book were foreshadowed by Hänsch’s early work in the 1970s when he used picosecond pulses to demonstrate the connection between the time and frequency domains in laser spectroscopy. This work complemented the advances in precision laser stabilization developed by Hall.
Book Synopsis Encyclopedia of Laser Physics and Technology by : Rüdiger Paschotta
Download or read book Encyclopedia of Laser Physics and Technology written by Rüdiger Paschotta and published by John Wiley & Sons. This book was released on 2008-12-03 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative two-volume encyclopedia (A-M, N-Z) helps to master the large variety of physical phenomena and technological aspects involved in laser technology and the wider field of photonics. Besides explaining in detail the physical principles and common techniques of laser operation, it also addresses such supplementary topics as ultrashort pulses, optical communications, optoelectronics, general optics, and quantum optics. References to selected scientific articles and textbooks aid readers in their further studies, and the cross-disciplinary approach makes this four-color encyclopedia of huge benefit to a wide audience in industry, government, and academic research.
Book Synopsis Semiconductor Disk Lasers by : Oleg G. Okhotnikov
Download or read book Semiconductor Disk Lasers written by Oleg G. Okhotnikov and published by John Wiley & Sons. This book was released on 2010-03-30 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This timely publication presents a review of the most recent developments in the field of Semiconductor Disk Lasers. Covering a wide range of key topics, such as operating principles, thermal management, nonlinear frequency conversion, semiconductor materials, short pulse generation, electrical pumping, and laser applications, the book provides readers with a comprehensive account of the fundamentals and latest advances in this rich and diverse field. In so doing, it brings together contributions from world experts at major collaborative research centers in Europe and the USA. Each chapter includes a tutorial style introduction to the selected topic suitable for postgraduate students and scientists with a basic background in optics - making it of interest to a wide range of scientists, researchers, engineers and physicists working and interested in this rapidly developing field. It will also serve as additional reading for students in the field.
Book Synopsis Electrical & Electronics Abstracts by :
Download or read book Electrical & Electronics Abstracts written by and published by . This book was released on 1989 with total page 1722 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Handbook of Laser Micro- and Nano-Engineering by : KOJI SUGIOKA.
Download or read book Handbook of Laser Micro- and Nano-Engineering written by KOJI SUGIOKA. and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.
Book Synopsis Ultrafast Lasers by : Martin E. Fermann
Download or read book Ultrafast Lasers written by Martin E. Fermann and published by CRC Press. This book was released on 2002-10-25 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering high-energy ultrafast amplifiers and solid-state, fiber, and diode lasers, this reference examines recent developments in high-speed laser technology. It presents a comprehensive survey of ultrafast laser technology, its applications, and future trends in various scientific and industrial areas. Topics include: micromachining applications for metals, dielectrics, and biological tissue; advanced electronics and semiconductor processing; optical coherence tomography; multiphoton microscopy; optical sampling and scanning; THz generation and imaging; optical communication systems; absolute phase control of optical signals; and more.