Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Flexible Discriminant And Mixture Models
Download Flexible Discriminant And Mixture Models full books in PDF, epub, and Kindle. Read online Flexible Discriminant And Mixture Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Statistics and Neural Networks by : Jim W. Kay
Download or read book Statistics and Neural Networks written by Jim W. Kay and published by Oxford University Press, USA. This book was released on 1999 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a broad overview of important current developments in the area of neural networks, this book highlights likely future trends.
Book Synopsis Encyclopedia of Measurement and Statistics by : Neil J. Salkind
Download or read book Encyclopedia of Measurement and Statistics written by Neil J. Salkind and published by SAGE. This book was released on 2007 with total page 1417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description
Book Synopsis The Elements of Statistical Learning by : Trevor Hastie
Download or read book The Elements of Statistical Learning written by Trevor Hastie and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
Book Synopsis Pattern Recognition by : José Francisco Martínez-Trinidad
Download or read book Pattern Recognition written by José Francisco Martínez-Trinidad and published by Springer. This book was released on 2011-06-24 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third Mexican Conference on Pattern Recognition, MCPR 2011, held in Cancun, Mexico, in June/July 2011. The 37 revised full papers were carefully reviewed and selected from 69 submissions and are organized in topical sections on pattern recognition and data mining; computer vision and robotics; image processing; neural networks and signal processing; and natural language and document processing.
Book Synopsis Finite Mixture Models by : Geoffrey McLachlan
Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Book Synopsis Comparative Risk Assessment and Environmental Decision Making by : Igor Linkov
Download or read book Comparative Risk Assessment and Environmental Decision Making written by Igor Linkov and published by Springer Science & Business Media. This book was released on 2006-03-02 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision making in environmental projects is typically a complex and confusing process characterized by trade-offs between socio-political, environmental, and economic impacts. Comparative Risk Assessment (CRA) is a methodology applied to facilitate decision making when various activities compete for limited resources. CRA has become an increasingly accepted research tool and has helped to characterize environmental profiles and priorities on the regional and national level. CRA may be considered as part of the more general but as yet quite academic field of multi-criteria decision analysis (MCDA). Considerable research in the area of MCDA has made available methods for applying scientific decision theoretical approaches to multi-criteria problems, but its applications, especially in environmental areas, are still limited. The papers show that the use of comparative risk assessment can provide the scientific basis for environmentally sound and cost-efficient policies, strategies, and solutions to our environmental challenges.
Book Synopsis Structural, Syntactic, and Statistical Pattern Recognition by : Dit-Yan Yeung
Download or read book Structural, Syntactic, and Statistical Pattern Recognition written by Dit-Yan Yeung and published by Springer Science & Business Media. This book was released on 2006-08-03 with total page 959 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the proceedings of the 11th International Workshop on Structural and Syntactic Pattern Recognition, SSPR 2006 and the 6th International Workshop on Statistical Techniques in Pattern Recognition, SPR 2006, held in Hong Kong, August 2006 alongside the Conference on Pattern Recognition, ICPR 2006. 38 revised full papers and 61 revised poster papers are included, together with 4 invited papers covering image analysis, character recognition, bayesian networks, graph-based methods and more.
Book Synopsis Statistical Pattern Recognition by : Andrew R. Webb
Download or read book Statistical Pattern Recognition written by Andrew R. Webb and published by Newnes. This book was released on 1999 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides an introduction to statistical pattern recognition theory and techniques. Most of the material presented in this book is concerned with discrimination and classification and has been drawn from a wide range of literature including that of engineering, statistics, computer science and the social sciences. This book is an attempt to provide a concise volume containing descriptions of many of the most useful of today's pattern processing techniques including many of the recent advances in nonparametric approaches to discrimination developed in the statistics literature and elsewhere. The techniques are illustrated with examples of real-world applications studies. Pointers are also provided to the diverse literature base where further details on applications, comparative studies and theoretical developments may be obtained"--Page [xv].
Book Synopsis Mixture Model-Based Classification by : Paul D. McNicholas
Download or read book Mixture Model-Based Classification written by Paul D. McNicholas and published by CRC Press. This book was released on 2016-10-04 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature." (Douglas Steinley, University of Missouri) Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a cluster Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.
Book Synopsis Constrained Clustering by : Sugato Basu
Download or read book Constrained Clustering written by Sugato Basu and published by CRC Press. This book was released on 2008-08-18 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the initial work on constrained clustering, there have been numerous advances in methods, applications, and our understanding of the theoretical properties of constraints and constrained clustering algorithms. Bringing these developments together, Constrained Clustering: Advances in Algorithms, Theory, and Applications presents an extensive collection of the latest innovations in clustering data analysis methods that use background knowledge encoded as constraints. Algorithms The first five chapters of this volume investigate advances in the use of instance-level, pairwise constraints for partitional and hierarchical clustering. The book then explores other types of constraints for clustering, including cluster size balancing, minimum cluster size,and cluster-level relational constraints. Theory It also describes variations of the traditional clustering under constraints problem as well as approximation algorithms with helpful performance guarantees. Applications The book ends by applying clustering with constraints to relational data, privacy-preserving data publishing, and video surveillance data. It discusses an interactive visual clustering approach, a distance metric learning approach, existential constraints, and automatically generated constraints. With contributions from industrial researchers and leading academic experts who pioneered the field, this volume delivers thorough coverage of the capabilities and limitations of constrained clustering methods as well as introduces new types of constraints and clustering algorithms.
Book Synopsis Data Mining and Data Visualization by :
Download or read book Data Mining and Data Visualization written by and published by Elsevier. This book was released on 2005-05-02 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Data Visualization focuses on dealing with large-scale data, a field commonly referred to as data mining. The book is divided into three sections. The first deals with an introduction to statistical aspects of data mining and machine learning and includes applications to text analysis, computer intrusion detection, and hiding of information in digital files. The second section focuses on a variety of statistical methodologies that have proven to be effective in data mining applications. These include clustering, classification, multivariate density estimation, tree-based methods, pattern recognition, outlier detection, genetic algorithms, and dimensionality reduction. The third section focuses on data visualization and covers issues of visualization of high-dimensional data, novel graphical techniques with a focus on human factors, interactive graphics, and data visualization using virtual reality. This book represents a thorough cross section of internationally renowned thinkers who are inventing methods for dealing with a new data paradigm. - Distinguished contributors who are international experts in aspects of data mining - Includes data mining approaches to non-numerical data mining including text data, Internet traffic data, and geographic data - Highly topical discussions reflecting current thinking on contemporary technical issues, e.g. streaming data - Discusses taxonomy of dataset sizes, computational complexity, and scalability usually ignored in most discussions - Thorough discussion of data visualization issues blending statistical, human factors, and computational insights
Book Synopsis Applied Predictive Modeling by : Max Kuhn
Download or read book Applied Predictive Modeling written by Max Kuhn and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Book Synopsis Advances in Neural Information Processing Systems 16 by : Sebastian Thrun
Download or read book Advances in Neural Information Processing Systems 16 written by Sebastian Thrun and published by MIT Press. This book was released on 2004 with total page 1694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers presented at the 2003 Neural Information Processing Conference by leading physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.
Book Synopsis Machine Learning in Modeling and Simulation by : Timon Rabczuk
Download or read book Machine Learning in Modeling and Simulation written by Timon Rabczuk and published by Springer Nature. This book was released on 2023-11-04 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning (ML) approaches have been extensively and successfully employed in various areas, like in economics, medical predictions, face recognition, credit card fraud detection, and spam filtering. There is clearly also the potential that ML techniques developed in Engineering and the Sciences will drastically increase the possibilities of analysis and accelerate the design to analysis time. With the use of ML techniques, coupled to conventional methods like finite element and digital twin technologies, new avenues of modeling and simulation can be opened but the potential of these ML techniques needs to still be fully harvested, with the methods developed and enhanced. The objective of this book is to provide an overview of ML in Engineering and the Sciences presenting fundamental theoretical ingredients with a focus on the next generation of computer modeling in Engineering and the Sciences in which the exciting aspects of machine learning are incorporated. The book is of value to any researcher and practitioner interested in research or applications of ML in the areas of scientific modeling and computer aided engineering.
Book Synopsis Discriminant Analysis and Statistical Pattern Recognition by : Geoffrey J. McLachlan
Download or read book Discriminant Analysis and Statistical Pattern Recognition written by Geoffrey J. McLachlan and published by John Wiley & Sons. This book was released on 2005-02-25 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "For both applied and theoretical statisticians as well as investigators working in the many areas in which relevant use can be made of discriminant techniques, this monograph provides a modern, comprehensive, and systematic account of discriminant analysis, with the focus on the more recent advances in the field." –SciTech Book News ". . . a very useful source of information for any researcher working in discriminant analysis and pattern recognition." –Computational Statistics Discriminant Analysis and Statistical Pattern Recognition provides a systematic account of the subject. While the focus is on practical considerations, both theoretical and practical issues are explored. Among the advances covered are regularized discriminant analysis and bootstrap-based assessment of the performance of a sample-based discriminant rule, and extensions of discriminant analysis motivated by problems in statistical image analysis. The accompanying bibliography contains over 1,200 references.
Download or read book Mixture Models written by Weixin Yao and published by CRC Press. This book was released on 2024-04-18 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixture models are a powerful tool for analyzing complex and heterogeneous datasets across many scientific fields, from finance to genomics. Mixture Models: Parametric, Semiparametric, and New Directions provides an up-to-date introduction to these models, their recent developments, and their implementation using R. It fills a gap in the literature by covering not only the basics of finite mixture models, but also recent developments such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling. Features Comprehensive overview of the methods and applications of mixture models Key topics include hypothesis testing, model selection, estimation methods, and Bayesian approaches Recent developments, such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling Examples and case studies from such fields as astronomy, biology, genomics, economics, finance, medicine, engineering, and sociology Integrated R code for many of the models, with code and data available in the R Package MixSemiRob Mixture Models: Parametric, Semiparametric, and New Directions is a valuable resource for researchers and postgraduate students from statistics, biostatistics, and other fields. It could be used as a textbook for a course on model-based clustering methods, and as a supplementary text for courses on data mining, semiparametric modeling, and high-dimensional data analysis.
Download or read book Tidy Modeling with R written by Max Kuhn and published by "O'Reilly Media, Inc.". This book was released on 2022-07-12 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get going with tidymodels, a collection of R packages for modeling and machine learning. Whether you're just starting out or have years of experience with modeling, this practical introduction shows data analysts, business analysts, and data scientists how the tidymodels framework offers a consistent, flexible approach for your work. RStudio engineers Max Kuhn and Julia Silge demonstrate ways to create models by focusing on an R dialect called the tidyverse. Software that adopts tidyverse principles shares both a high-level design philosophy and low-level grammar and data structures, so learning one piece of the ecosystem makes it easier to learn the next. You'll understand why the tidymodels framework has been built to be used by a broad range of people. With this book, you will: Learn the steps necessary to build a model from beginning to end Understand how to use different modeling and feature engineering approaches fluently Examine the options for avoiding common pitfalls of modeling, such as overfitting Learn practical methods to prepare your data for modeling Tune models for optimal performance Use good statistical practices to compare, evaluate, and choose among models