Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Finite Markov Chains
Download Finite Markov Chains full books in PDF, epub, and Kindle. Read online Finite Markov Chains ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Finite Markov Chains and Algorithmic Applications by : Olle Häggström
Download or read book Finite Markov Chains and Algorithmic Applications written by Olle Häggström and published by Cambridge University Press. This book was released on 2002-05-30 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a lecture course given at Chalmers University of Technology, this 2002 book is ideal for advanced undergraduate or beginning graduate students. The author first develops the necessary background in probability theory and Markov chains before applying it to study a range of randomized algorithms with important applications in optimization and other problems in computing. Amongst the algorithms covered are the Markov chain Monte Carlo method, simulated annealing, and the recent Propp-Wilson algorithm. This book will appeal not only to mathematicians, but also to students of statistics and computer science. The subject matter is introduced in a clear and concise fashion and the numerous exercises included will help students to deepen their understanding.
Book Synopsis Finite Markov Chains by : John G Kemeny
Download or read book Finite Markov Chains written by John G Kemeny and published by . This book was released on 1960 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Finite Markov Processes and Their Applications by : Marius Iosifescu
Download or read book Finite Markov Processes and Their Applications written by Marius Iosifescu and published by Courier Corporation. This book was released on 2014-07-01 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models. The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic chains. A complete study of the general properties of homogeneous chains follows. Succeeding chapters examine the fundamental role of homogeneous infinite Markov chains in mathematical modeling employed in the fields of psychology and genetics; the basics of nonhomogeneous finite Markov chain theory; and a study of Markovian dependence in continuous time, which constitutes an elementary introduction to the study of continuous parameter stochastic processes.
Book Synopsis Self-Learning Control of Finite Markov Chains by : A.S. Poznyak
Download or read book Self-Learning Control of Finite Markov Chains written by A.S. Poznyak and published by CRC Press. This book was released on 2000-01-03 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a number of new and potentially useful self-learning (adaptive) control algorithms and theoretical as well as practical results for both unconstrained and constrained finite Markov chains-efficiently processing new information by adjusting the control strategies directly or indirectly.
Book Synopsis Introduction to Markov Chains by : Ehrhard Behrends
Download or read book Introduction to Markov Chains written by Ehrhard Behrends and published by Vieweg+Teubner Verlag. This book was released on 2014-07-08 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Besides the investigation of general chains the book contains chapters which are concerned with eigenvalue techniques, conductance, stopping times, the strong Markov property, couplings, strong uniform times, Markov chains on arbitrary finite groups (including a crash-course in harmonic analysis), random generation and counting, Markov random fields, Gibbs fields, the Metropolis sampler, and simulated annealing. With 170 exercises.
Download or read book Markov Chains written by Pierre Bremaud and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.
Book Synopsis Mathematical Aspects of Mixing Times in Markov Chains by : Ravi R. Montenegro
Download or read book Mathematical Aspects of Mixing Times in Markov Chains written by Ravi R. Montenegro and published by Now Publishers Inc. This book was released on 2006 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Aspects of Mixing Times in Markov Chains is a comprehensive, well-written review of the subject that will be of interest to researchers and students in computer and mathematical sciences.
Book Synopsis Markov Chains and Stochastic Stability by : Sean Meyn
Download or read book Markov Chains and Stochastic Stability written by Sean Meyn and published by Cambridge University Press. This book was released on 2009-04-02 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.
Book Synopsis Handbook of Research on Applied AI for International Business and Marketing Applications by : Christiansen, Bryan
Download or read book Handbook of Research on Applied AI for International Business and Marketing Applications written by Christiansen, Bryan and published by IGI Global. This book was released on 2020-09-25 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence (AI) describes machines/computers that mimic cognitive functions that humans associate with other human minds, such as learning and problem solving. As businesses have evolved to include more automation of processes, it has become more vital to understand AI and its various applications. Additionally, it is important for workers in the marketing industry to understand how to coincide with and utilize these techniques to enhance and make their work more efficient. The Handbook of Research on Applied AI for International Business and Marketing Applications is a critical scholarly publication that provides comprehensive research on artificial intelligence applications within the context of international business. Highlighting a wide range of topics such as diversification, risk management, and artificial intelligence, this book is ideal for marketers, business professionals, academicians, practitioners, researchers, and students.
Author :Sylvia Frühwirth-Schnatter Publisher :Springer Science & Business Media ISBN 13 :0387357688 Total Pages :506 pages Book Rating :4.3/5 (873 download)
Book Synopsis Finite Mixture and Markov Switching Models by : Sylvia Frühwirth-Schnatter
Download or read book Finite Mixture and Markov Switching Models written by Sylvia Frühwirth-Schnatter and published by Springer Science & Business Media. This book was released on 2006-11-24 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.
Book Synopsis Continuous-Time Markov Chains and Applications by : G. George Yin
Download or read book Continuous-Time Markov Chains and Applications written by G. George Yin and published by Springer Science & Business Media. This book was released on 2012-11-14 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a systematic treatment of singularly perturbed systems that naturally arise in control and optimization, queueing networks, manufacturing systems, and financial engineering. It presents results on asymptotic expansions of solutions of Komogorov forward and backward equations, properties of functional occupation measures, exponential upper bounds, and functional limit results for Markov chains with weak and strong interactions. To bridge the gap between theory and applications, a large portion of the book is devoted to applications in controlled dynamic systems, production planning, and numerical methods for controlled Markovian systems with large-scale and complex structures in the real-world problems. This second edition has been updated throughout and includes two new chapters on asymptotic expansions of solutions for backward equations and hybrid LQG problems. The chapters on analytic and probabilistic properties of two-time-scale Markov chains have been almost completely rewritten and the notation has been streamlined and simplified. This book is written for applied mathematicians, engineers, operations researchers, and applied scientists. Selected material from the book can also be used for a one semester advanced graduate-level course in applied probability and stochastic processes.
Book Synopsis General Irreducible Markov Chains and Non-Negative Operators by : Esa Nummelin
Download or read book General Irreducible Markov Chains and Non-Negative Operators written by Esa Nummelin and published by Cambridge University Press. This book was released on 2004-06-03 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the theory of general irreducible Markov chains and its connection to the Perron-Frobenius theory of nonnegative operators.
Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton
Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Book Synopsis Essentials of Stochastic Processes by : Richard Durrett
Download or read book Essentials of Stochastic Processes written by Richard Durrett and published by Springer. This book was released on 2016-11-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Book Synopsis Introduction to Probability by : David F. Anderson
Download or read book Introduction to Probability written by David F. Anderson and published by Cambridge University Press. This book was released on 2017-11-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Book Synopsis Random Processes with Applications to Circuits and Communications by : Bernard C. Levy
Download or read book Random Processes with Applications to Circuits and Communications written by Bernard C. Levy and published by Springer Nature. This book was released on 2019-09-14 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is based on 20 years of teaching a graduate-level course in random processes to a constituency extending beyond signal processing, communications, control, and networking, and including in particular circuits, RF and optics graduate students. In order to accommodate today’s circuits students’ needs to understand noise modeling, while covering classical material on Brownian motion, Poisson processes, and power spectral densities, the author has inserted discussions of thermal noise, shot noise, quantization noise and oscillator phase noise. At the same time, techniques used to analyze modulated communications and radar signals, such as the baseband representation of bandpass random signals, or the computation of power spectral densities of a wide variety of modulated signals, are presented. This book also emphasizes modeling skills, primarily through the inclusion of long problems at the end of each chapter, where starting from a description of the operation of a system, a model is constructed and then analyzed. Provides semester-length coverage of random processes, applicable to the analysis of electrical and computer engineering systems; Designed to be accessible to students with varying backgrounds in undergraduate mathematics and engineering; Includes solved examples throughout the discussion, as well as extensive problem sets at the end of every chapter; Develops and reinforces student’s modeling skills, with inclusion of modeling problems in every chapter; Solutions for instructors included.
Book Synopsis An Introduction to Markov Processes by : Daniel W. Stroock
Download or read book An Introduction to Markov Processes written by Daniel W. Stroock and published by Springer Science & Business Media. This book was released on 2013-10-28 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rigorous but elementary introduction to the theory of Markov Processes on a countable state space. It should be accessible to students with a solid undergraduate background in mathematics, including students from engineering, economics, physics, and biology. Topics covered are: Doeblin's theory, general ergodic properties, and continuous time processes. Applications are dispersed throughout the book. In addition, a whole chapter is devoted to reversible processes and the use of their associated Dirichlet forms to estimate the rate of convergence to equilibrium. These results are then applied to the analysis of the Metropolis (a.k.a simulated annealing) algorithm. The corrected and enlarged 2nd edition contains a new chapter in which the author develops computational methods for Markov chains on a finite state space. Most intriguing is the section with a new technique for computing stationary measures, which is applied to derivations of Wilson's algorithm and Kirchoff's formula for spanning trees in a connected graph.