Federated Learning: From Algorithms To System Implementation

Download Federated Learning: From Algorithms To System Implementation PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811292566
Total Pages : 546 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning: From Algorithms To System Implementation by : Liefeng Bo

Download or read book Federated Learning: From Algorithms To System Implementation written by Liefeng Bo and published by World Scientific. This book was released on 2024-08-16 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by researchers and practitioners who build cutting-edge federated learning applications to solve real-world problems, this book covers the spectrum of federated learning technology from concepts and application scenarios to advanced algorithms and finally system implementation in three parts. It provides a comprehensive review and summary of federated learning technology, as well as presenting numerous novel federated learning algorithms which no other books have summarized. The work also references the most recent papers, articles and reviews from the past several years to keep pace with the academic and industrial state of the art of federated learning.The first part lays a foundational understanding of federated learning by going through its definition and characteristics, and also possible application scenarios and related privacy protection technologies. The second part elaborates on some of the federated learning algorithms innovated by JD Technology which encompass both vertical and horizontal scenarios, including vertical federated tree models, linear regression, kernel learning, asynchronous methods, deep learning, homomorphic encryption, and reinforcement learning. The third and final part shifts in scope to federated learning systems — namely JD Technology's own FedLearn system — by discussing its design and implementation using gRPC, in addition to specific performance optimization techniques plus integration with blockchain technology.This book will serve as a great reference for readers who are experienced in federated learning algorithms, building privacy-preserving machine learning applications or solving real-world problems with privacy-restricted scenarios.

Federated Learning

Download Federated Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030630765
Total Pages : 291 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning by : Qiang Yang

Download or read book Federated Learning written by Qiang Yang and published by Springer Nature. This book was released on 2020-11-25 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”

Big Data over Networks

Download Big Data over Networks PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107099005
Total Pages : 459 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Big Data over Networks by : Shuguang Cui

Download or read book Big Data over Networks written by Shuguang Cui and published by Cambridge University Press. This book was released on 2016-01-14 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the crucial interaction between big data and communication, social and biological networks using critical mathematical tools and state-of-the-art research.

Deep Learning with Azure

Download Deep Learning with Azure PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484236793
Total Pages : 298 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with Azure by : Mathew Salvaris

Download or read book Deep Learning with Azure written by Mathew Salvaris and published by Apress. This book was released on 2018-08-24 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI? Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll Learn Become familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AI Use pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more) Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolving Discover the options for training and operationalizing deep learning models on Azure Who This Book Is For Professional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful.

Federated Learning Systems

Download Federated Learning Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030706044
Total Pages : 207 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning Systems by : Muhammad Habib ur Rehman

Download or read book Federated Learning Systems written by Muhammad Habib ur Rehman and published by Springer Nature. This book was released on 2021-06-11 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.

Federated Learning

Download Federated Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030968960
Total Pages : 531 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning by : Heiko Ludwig

Download or read book Federated Learning written by Heiko Ludwig and published by Springer Nature. This book was released on 2022-07-07 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Federated Learning: A Comprehensive Overview of Methods and Applications presents an in-depth discussion of the most important issues and approaches to federated learning for researchers and practitioners. Federated Learning (FL) is an approach to machine learning in which the training data are not managed centrally. Data are retained by data parties that participate in the FL process and are not shared with any other entity. This makes FL an increasingly popular solution for machine learning tasks for which bringing data together in a centralized repository is problematic, either for privacy, regulatory or practical reasons. This book explains recent progress in research and the state-of-the-art development of Federated Learning (FL), from the initial conception of the field to first applications and commercial use. To obtain this broad and deep overview, leading researchers address the different perspectives of federated learning: the core machine learning perspective, privacy and security, distributed systems, and specific application domains. Readers learn about the challenges faced in each of these areas, how they are interconnected, and how they are solved by state-of-the-art methods. Following an overview on federated learning basics in the introduction, over the following 24 chapters, the reader will dive deeply into various topics. A first part addresses algorithmic questions of solving different machine learning tasks in a federated way, how to train efficiently, at scale, and fairly. Another part focuses on providing clarity on how to select privacy and security solutions in a way that can be tailored to specific use cases, while yet another considers the pragmatics of the systems where the federated learning process will run. The book also covers other important use cases for federated learning such as split learning and vertical federated learning. Finally, the book includes some chapters focusing on applying FL in real-world enterprise settings.

Handbook on Federated Learning

Download Handbook on Federated Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1003837522
Total Pages : 381 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Handbook on Federated Learning by : Saravanan Krishnan

Download or read book Handbook on Federated Learning written by Saravanan Krishnan and published by CRC Press. This book was released on 2024-01-09 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mobile, wearable, and self-driving telephones are just a few examples of modern distributed networks that generate enormous amount of information every day. Due to the growing computing capacity of these devices as well as concerns over the transfer of private information, it has become important to process the part of the data locally by moving the learning methods and computing to the border of devices. Federated learning has developed as a model of education in these situations. Federated learning (FL) is an expert form of decentralized machine learning (ML). It is essential in areas like privacy, large-scale machine education and distribution. It is also based on the current stage of ICT and new hardware technology and is the next generation of artificial intelligence (AI). In FL, central ML model is built with all the data available in a centralised environment in the traditional machine learning. It works without problems when the predictions can be served by a central server. Users require fast responses in mobile computing, but the model processing happens at the sight of the server, thus taking too long. The model can be placed in the end-user device, but continuous learning is a challenge to overcome, as models are programmed in a complete dataset and the end-user device lacks access to the entire data package. Another challenge with traditional machine learning is that user data is aggregated at a central location where it violates local privacy policies laws and make the data more vulnerable to data violation. This book provides a comprehensive approach in federated learning for various aspects.

Essential Federated Learning

Download Essential Federated Learning PDF Online Free

Author :
Publisher : HiTeX Press
ISBN 13 :
Total Pages : 249 pages
Book Rating : 4.:/5 (661 download)

DOWNLOAD NOW!


Book Synopsis Essential Federated Learning by : Robert Johnson

Download or read book Essential Federated Learning written by Robert Johnson and published by HiTeX Press. This book was released on 2024-10-27 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Essential Federated Learning: AI at the Edge" offers a comprehensive exploration into the transformative domain of federated learning, an innovative approach reshaping the AI landscape by enabling data decentralization. This book demystifies the foundational concepts of federated learning, capturing its potential to increase privacy, enhance data security, and empower industries across sectors such as healthcare, finance, and beyond. By keeping data localized, federated learning minimizes privacy concerns while leveraging the power and capability of edge computing. Each chapter meticulously builds upon the last, guiding readers from basic principles to advanced applications, providing a balanced understanding of technical architectures, algorithms, and real-world implementations. Rich with insights into the ethical and social implications of federated learning, this book addresses the pressing challenges and future directions that are critical for its evolution. Topics such as privacy preservation, bias mitigation, and regulatory compliance are thoroughly examined, offering a holistic view of how federated learning can be applied responsibly and effectively. Whether you're a researcher, practitioner, or policy-maker, "Essential Federated Learning: AI at the Edge" offers the essential knowledge needed to harness the advantages of this cutting-edge technology, ensuring readers are well-equipped to navigate the rapidly expanding landscape of AI and edge computing.

Federated Learning for Internet of Medical Things

Download Federated Learning for Internet of Medical Things PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000891399
Total Pages : 254 pages
Book Rating : 4.0/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning for Internet of Medical Things by : Pronaya Bhattacharya

Download or read book Federated Learning for Internet of Medical Things written by Pronaya Bhattacharya and published by CRC Press. This book was released on 2023-06-16 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book intends to present emerging Federated Learning (FL)-based architectures, frameworks, and models in Internet of Medical Things (IoMT) applications. It intends to build on the basics of the healthcare industry, the current data sharing requirements, and security and privacy issues in medical data sharing. Once IoMT is presented, the book shifts towards the proposal of privacy-preservation in IoMT, and explains how FL presents a viable solution to these challenges. The claims are supported through lucid illustrations, tables, and examples that present effective and secured FL schemes, simulations, and practical discussion on use-case scenarios in a simple manner. The book intends to create opportunities for healthcare communities to build effective FL solutions around the presented themes, and to support work in related areas that will benefit from reading the book. It also intends to present breakthroughs and foster innovation in FL-based research, specifically in the IoMT domain. The emphasis of this book is on understanding the contributions of IoMT to healthcare analytics, and its aim is to provide insights including evolution, research directions, challenges, and the way to empower healthcare services through federated learning. The book also intends to cover the ethical and social issues around the recent advancements in the field of decentralized Artificial Intelligence. The book is mainly intended for undergraduates, post-graduates, researchers, and healthcare professionals who wish to learn FL-based solutions right from scratch, and build practical FL solutions in different IoMT verticals.

Federated Learning

Download Federated Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015851
Total Pages : 189 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning by : Qiang Qiang Yang

Download or read book Federated Learning written by Qiang Qiang Yang and published by Springer Nature. This book was released on 2022-06-01 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private? Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.

Congress on Intelligent Systems

Download Congress on Intelligent Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811691134
Total Pages : 914 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Congress on Intelligent Systems by : Mukesh Saraswat

Download or read book Congress on Intelligent Systems written by Mukesh Saraswat and published by Springer Nature. This book was released on 2022-06-30 with total page 914 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of selected papers presented at the Second Congress on Intelligent Systems (CIS 2021), organized by Soft Computing Research Society and CHRIST (Deemed to be University), Bengaluru, India during September 4 – 5, 2021. It includes novel and innovative work from experts, practitioners, scientists and decision-makers from academia and industry. It covers topics such as Internet of Things, information security, embedded systems, real-time systems, cloud computing, big data analysis, quantum computing, automation systems, bio-inspired intelligence, cognitive systems, cyber physical systems, data analytics, data/web mining, data science, intelligence for security, intelligent decision making systems, intelligent information processing, intelligent transportation, artificial intelligence for machine vision, imaging sensors technology, image segmentation, convolutional neural network, image/video classification, soft computing for machine vision, pattern recognition, human computer interaction, robotic devices and systems, autonomous vehicles, intelligent control systems, human motor control, game playing, evolutionary algorithms, swarm optimization, neural network, deep learning, supervised learning, unsupervised learning, fuzzy logic, rough sets, computational optimization, and neuro fuzzy systems.

Federated Learning

Download Federated Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1040088597
Total Pages : 353 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning by : Jayakrushna Sahoo

Download or read book Federated Learning written by Jayakrushna Sahoo and published by CRC Press. This book was released on 2024-09-20 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book provides an in-depth understanding of federated learning, a new and increasingly popular learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. The volume explores how federated learning integrates AI technologies, such as blockchain, machine learning, IoT, edge computing, and fog computing systems, allowing multiple collaborators to build a robust machine-learning model using a large dataset. It highlights the capabilities and benefits of federated learning, addressing critical issues such as data privacy, data security, data access rights, and access to heterogeneous data. The volume first introduces the general concepts of machine learning and then summarizes the federated learning system setup and its associated terminologies. It also presents a basic classification of FL, the application of FL for various distributed computing scenarios, an integrated view of applications of software-defined networks, etc. The book also explores the role of federated learning in the Internet of Medical Things systems as well. The book provides a pragmatic analysis of strategies for developing a communication-efficient federated learning system. It also details the applicability of blockchain with federated learning on IoT-based systems. It provides an in-depth study of FL-based intrusion detection systems, discussing their taxonomy and functioning and showcasing their superiority over existing systems. The book is unique in that it evaluates the privacy and security aspects in federated learning. The volume presents a comprehensive analysis of some of the common challenges, proven threats, and attack strategies affecting FL systems. Special coverage on protected shot-based federated learning for facial expression recognition is also included. This comprehensive book, Federated Learning: Principles, Paradigms, and Applications, will enable research scholars, information technology professionals, and distributed computing engineers to understand various aspects of federated learning concepts and computational techniques for real-life implementation.

Applied Soft Computing and Communication Networks

Download Applied Soft Computing and Communication Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819720044
Total Pages : 590 pages
Book Rating : 4.8/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Applied Soft Computing and Communication Networks by : Sabu M. Thampi

Download or read book Applied Soft Computing and Communication Networks written by Sabu M. Thampi and published by Springer Nature. This book was released on with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Federated Learning and AI for Healthcare 5.0

Download Federated Learning and AI for Healthcare 5.0 PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 :
Total Pages : 413 pages
Book Rating : 4.3/5 (693 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning and AI for Healthcare 5.0 by : Hassan, Ahdi

Download or read book Federated Learning and AI for Healthcare 5.0 written by Hassan, Ahdi and published by IGI Global. This book was released on 2023-12-18 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Healthcare sector is evolving with Healthcare 5.0, promising better patient care and efficiency. However, challenges like data security and analysis arise due to increased digitization. Federated Learning and AI for Healthcare 5.0 offers solutions, explaining cloud computing's role in managing data and advocating for security measures. It explores federated learning's use in maintaining data privacy during analysis, presenting practical cases for implementation. The book also addresses emerging tech like quantum computing and blockchain-based services, envisioning an innovative Healthcare 5.0. It empowers healthcare professionals, IT experts, and data scientists to leverage these technologies for improved patient care and system efficiency, making Healthcare 5.0 secure and patient centric.

Blockchain Systems and Communication Networks: From Concepts to Implementation

Download Blockchain Systems and Communication Networks: From Concepts to Implementation PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030717887
Total Pages : 165 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Blockchain Systems and Communication Networks: From Concepts to Implementation by : Mubashir Husain Rehmani

Download or read book Blockchain Systems and Communication Networks: From Concepts to Implementation written by Mubashir Husain Rehmani and published by Springer Nature. This book was released on 2021-05-19 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides extensive insights on blockchain systems, starting from a historical perspective and moving towards building foundational knowledge, with focus on communication networks. It covers blockchain applications, algorithms, architectures, design and implementation, and security and privacy issues, providing the reader with a comprehensive overview. Further, it discusses blockchain systems and its integration to communication networks. The book includes hands-on, practical tutorials, self-assessment exercises, and review questions; tips and sample programs are also provided throughout. Complementary supporting material for instructors, including open source programming code for practical tutorials and exercises, is also available. The target audience includes graduate students, professionals, and researchers working in the areas of blockchain systems, distributed ledger technology, computer networks and communications, artificial intelligence, and cybersecurity.

Model Optimization Methods for Efficient and Edge AI

Download Model Optimization Methods for Efficient and Edge AI PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1394219210
Total Pages : 436 pages
Book Rating : 4.3/5 (942 download)

DOWNLOAD NOW!


Book Synopsis Model Optimization Methods for Efficient and Edge AI by : Pethuru Raj Chelliah

Download or read book Model Optimization Methods for Efficient and Edge AI written by Pethuru Raj Chelliah and published by John Wiley & Sons. This book was released on 2025-01-09 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive overview of the fledgling domain of federated learning (FL), explaining emerging FL methods, architectural approaches, enabling frameworks, and applications Model Optimization Methods for Efficient and Edge AI explores AI model engineering, evaluation, refinement, optimization, and deployment across multiple cloud environments (public, private, edge, and hybrid). It presents key applications of the AI paradigm, including computer vision (CV) and Natural Language Processing (NLP), explaining the nitty-gritty of federated learning (FL) and how the FL method is helping to fulfill AI model optimization needs. The book also describes tools that vendors have created, including FL frameworks and platforms such as PySyft, Tensor Flow Federated (TFF), FATE (Federated AI Technology Enabler), Tensor/IO, and more. The first part of the text covers popular AI and ML methods, platforms, and applications, describing leading AI frameworks and libraries in order to clearly articulate how these tools can help with visualizing and implementing highly flexible AI models quickly. The second part focuses on federated learning, discussing its basic concepts, applications, platforms, and its potential in edge systems (such as IoT). Other topics covered include: Building AI models that are destined to solve several problems, with a focus on widely articulated classification, regression, association, clustering, and other prediction problems Generating actionable insights through a variety of AI algorithms, platforms, parallel processing, and other enablers Compressing AI models so that computational, memory, storage, and network requirements can be substantially reduced Addressing crucial issues such as data confidentiality, data access rights, data protection, and access to heterogeneous data Overcoming cyberattacks on mission-critical software systems by leveraging federated learning

Wireless Algorithms, Systems, and Applications

Download Wireless Algorithms, Systems, and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030861309
Total Pages : 643 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Wireless Algorithms, Systems, and Applications by : Zhe Liu

Download or read book Wireless Algorithms, Systems, and Applications written by Zhe Liu and published by Springer Nature. This book was released on 2021-09-08 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set constitutes the proceedings of the 16th International Conference on Wireless Algorithms, Systems, and Applications, WASA 2021, which was held during June 25-27, 2021. The conference took place in Nanjing, China.The 103 full and 57 short papers presented in these proceedings were carefully reviewed and selected from 315 submissions. The contributions in Part II of the set are subdivided into the following topical sections: Scheduling & Optimization II; Security; Data Center Networks and Cloud Computing; Privacy-Aware Computing; Internet of Vehicles; Visual Computing for IoT; Mobile Ad-Hoc Networks.