Fast Forward Modeling and Inversion of Borehole Sonic Measurements Using Spatial Sensitivity Functions

Download Fast Forward Modeling and Inversion of Borehole Sonic Measurements Using Spatial Sensitivity Functions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 406 pages
Book Rating : 4.:/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Fast Forward Modeling and Inversion of Borehole Sonic Measurements Using Spatial Sensitivity Functions by : Shan Huang

Download or read book Fast Forward Modeling and Inversion of Borehole Sonic Measurements Using Spatial Sensitivity Functions written by Shan Huang and published by . This book was released on 2015 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fast Forward Modeling and Inversion of Borehole Sonic Measurements Using Spatial Sensitivity Functions

Download Fast Forward Modeling and Inversion of Borehole Sonic Measurements Using Spatial Sensitivity Functions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 408 pages
Book Rating : 4.:/5 (923 download)

DOWNLOAD NOW!


Book Synopsis Fast Forward Modeling and Inversion of Borehole Sonic Measurements Using Spatial Sensitivity Functions by : Shan Huang (Ph. D.)

Download or read book Fast Forward Modeling and Inversion of Borehole Sonic Measurements Using Spatial Sensitivity Functions written by Shan Huang (Ph. D.) and published by . This book was released on 2015 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Borehole sonic measurements are widely used by petrophysicists to estimate in-situ dynamic elastic properties of rock formations. The estimated formation properties typically guide the interpretation of seismic amplitude measurements in the exploration and development of hydrocarbon reservoirs. Due to limitations in vertical resolution, borehole sonic measurements (sonic logs) provide spatially averaged values of formation properties in thinly bedded rocks. In addition, mud-filtrate invasion and near-wellbore formation damage can bias the elastic properties estimated from sonic logs. The interpretation of sonic logs in high angle (HA) and horizontal (HZ) wells is even more challenging because of three-dimensional geometrical effects and anisotropy. A reliable approach to account for geometrical effects in the interpretation of sonic logs is the implementation of forward modeling and inversion techniques. However, the computation time required to model the direct problem, namely wave propagation in the borehole environment, severely constraints the usage of inversion approaches in sonic-log interpretation. This dissertation develops new methods for the rapid simulation of sonic logs using the concept of spatial sensitivity functions. Sonic spatial sensitivity functions are equivalent to the Green's function of a particular sonic measurement; they also serve as weighting matrices to map formation elastic properties into the respective measurement space. Application of sensitivity functions to challenging synthetic examples verifies that the maximum relative error in the modeled sonic logs is lower than 3% for flexural, Stoneley, and compressional (P-) and shear (S-) modes. Compared to rigorous numerical simulations, the new fast sonic modeling method reduces computation time by 98%. Using the fast sonic simulation algorithm, we develop an inversion method that combines multi-frequency flexural dispersion and P- and S- mode slowness logs to estimate layer-by-layer compressional and shear slownesses of rock formations. Synthetic verification examples as well as interpretation of field cases indicate that the estimated formation compressional and shear slownesses are within 3% of true model properties, exhibiting a maximum uncertainty of 6%. When compared to conventional sonic-log interpretation, the new inversion-based method effectively reduces shoulder-bed effects and relative errors in estimated properties by 15%, while the vertical resolution of sonic logs is improved from 1.83 m to 0.5 m. Finally, we show that multi-mode wave interference in HA/HZ wells makes it difficult to identify the low-frequency slowness asymptote of the flexural mode. We extend the sensitivity method to three dimensions to approach this latter problem and to model high-frequency dispersion logs. Because the calculated P-mode slowness log exhibits strong dependence to processing parameters, conventional waveform semblance-based processing becomes inadequate in HA wells. We introduce a new P-arrival slowness log to circumvent wave mode interference and to avoid semblance calculations. Additionally, we also develop a one-dimensional integration method to rapidly model P-arrival slowness logs when HA/HZ wells penetrate anisotropic thin beds. The fast modeling algorithm generates synthetic logs that match sonic logs simulated with rigorous modeling procedures within 5% while providing a 99% reduction in computation time.

Rapid Modeling and Inversion-based Interpretation of Borehole Acoustic Measurements Acquired in Isotropic and Vertical Transversely Isotropic Formations

Download Rapid Modeling and Inversion-based Interpretation of Borehole Acoustic Measurements Acquired in Isotropic and Vertical Transversely Isotropic Formations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 336 pages
Book Rating : 4.:/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Rapid Modeling and Inversion-based Interpretation of Borehole Acoustic Measurements Acquired in Isotropic and Vertical Transversely Isotropic Formations by : Elsa Maalouf

Download or read book Rapid Modeling and Inversion-based Interpretation of Borehole Acoustic Measurements Acquired in Isotropic and Vertical Transversely Isotropic Formations written by Elsa Maalouf and published by . This book was released on 2017 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Borehole acoustic measurements are often affected by instrument noise, motion and eccentricity, environmental conditions, and spatial averaging that can compromise the accuracy of elastic properties of rock formations calculated with conventional interpretation methods. Forward and inverse modeling can be used to improve the interpretation of acoustic logs acquired in the presence of spatially complex rock formations and adverse borehole conditions. However, forward modeling of acoustic modes often requires time-consuming numerical algorithms. The main objective of this dissertation is to develop fast-forward modeling and inversion-based interpretation procedures of borehole acoustic logs for isotropic and vertical transversely isotropic (VTI) formations. Fast-forward modeling is achieved with spatial sensitivity functions which are calculated from frequency-domain linear perturbation theory of borehole acoustic modes. Spatial sensitivity functions quantify both the dependence of measured slowness on elastic properties and the spatial averaging introduced by acoustic tools. Fast-forward modeling using spatial sensitivity functions is applied to synthetic examples that include thin layers, anisotropy, and dipping layers, and is successfully validated with numerical simulations performed with finite-difference and finite-element methods. Two inversion-based interpretation methods are then developed: (1) a physics-based inversion method to reduce noise and spatial averaging effects on acoustic logs acquired in horizontally layered formations penetrated by vertical wells, and (2) a sequential inversion method to estimate stiffness coefficients of VTI formations from multi-frequency flexural/quadrupole, Stoneley, and compressional logs. The physics-based inversion method is applied to mitigate measurement noise and spatial averaging effects of acoustic logs acquired in two hydrocarbon reservoirs. Results confirm the accuracy and reliability of the estimated layer-by-layer elastic properties compared to conventional numerical filters and are obtained in less than 14 CPU seconds for a 100 ft-depth log. In VTI formations penetrated by vertical wells, sequential inversion is applied to estimate layer-by-layer stiffness coefficients of synthetic formations from borehole acoustic logs. Results indicate that mitigating spatial averaging of frequency-dependent slowness logs prior to inversion improves the layer-by-layer estimation of slownesses by a factor of 2, and that sequential inversion yields accurate and reliable estimates of rock stiffness coefficients. Finally, in high-angle wells fast-forward modeling yields flexural slownesses measured with orthogonal dipoles with 2% relative errors and in 3 CPU minutes for a log consisting of 50 measured-depth samples, compared to 15 CPU hours when using finite-difference simulation methods. Analysis of field and synthetic examples confirms that inversion-based interpretation methods yield more accurate estimations of elastic properties than conventional sonic-log interpretation procedures. Spatial sensitivity functions constitute a fast, reliable, and efficient alternative for interpreting acoustic logs acquired in isotropic and VTI formations.

Numerical Simulation and Interpretation of Sonic Measurements in Vertical and Highly Deviated Wells

Download Numerical Simulation and Interpretation of Sonic Measurements in Vertical and Highly Deviated Wells PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 88 pages
Book Rating : 4.:/5 (962 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation and Interpretation of Sonic Measurements in Vertical and Highly Deviated Wells by : Elsa Maalouf

Download or read book Numerical Simulation and Interpretation of Sonic Measurements in Vertical and Highly Deviated Wells written by Elsa Maalouf and published by . This book was released on 2016 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: Borehole sonic measurements are widely used to estimate formation elastic properties and to construct synthetic seismograms. However, presence of noise compromises the accuracy of sonic logs. Sonic logs are prone to errors originating from near wellbore damage or mud-filtrate invasion. Moreover, sonic logs are calculated from the numerical processing of waveforms over a wide range of receivers. Numerical processing induces errors in the sonic slowness because the slowness value is averaged over the length of the receiver array. I apply a fast modeling method using spatial sensitivity functions to calculate sonic logs. First, I define the spatial sensitivity function for the compressional and flexural modes. Then, I apply the fast modeling in a joint inversion of shear and compressional slowness logs to mitigate noise contaminating sonic logs. Joint inversion is performed in vertical and slightly-dipping wells, to estimate layer-by-layer formation elastic and mechanical properties for isotropic and anisotropic formations. Finally, I introduce a fast modeling procedure for compressional and flexural modes in deviated and horizontal wells. Results of the fast modeling are compared to finite-difference numerical simulations. The fast modeling of sonic borehole measurements in deviated wells can be applied in a joint inversion to estimate formation elastic and geometrical properties.

Rapid Modeling of Borehole Measurements of Nuclear Magnetic Resonance Via Spatial Sensitivity Functions

Download Rapid Modeling of Borehole Measurements of Nuclear Magnetic Resonance Via Spatial Sensitivity Functions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (134 download)

DOWNLOAD NOW!


Book Synopsis Rapid Modeling of Borehole Measurements of Nuclear Magnetic Resonance Via Spatial Sensitivity Functions by : Mohammad Albusairi

Download or read book Rapid Modeling of Borehole Measurements of Nuclear Magnetic Resonance Via Spatial Sensitivity Functions written by Mohammad Albusairi and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Borehole measurements of Nuclear Magnetic Resonance (NMR) are routinely used to estimate in situ rock and fluid properties. Conventional NMR interpretation methods often neglect bed-boundary, mud-filtrate invasion, layer-thickness, and layer-dip effects in the calculation of fluid volumetric concentrations and NMR relaxation-diffusion correlations. Such effects introduce notable spatial averaging of intrinsic rock and fluid properties across thinly-bedded formations or in the vicinity of boundaries between layers exhibiting large property contrasts. Furthermore, the interpretation of NMR measurements entails major technical challenges in horizontal layers penetrated by high-angle and horizontal wells (HAHz) or across dipping layers penetrated by a vertical well. Three-dimensional (3D) geometrical effects, coupled with spatially and petrophysically heterogeneous rocks, may bias petrophysical estimates obtained from borehole NMR measurements when using interpretation procedures designed for vertical wells and horizontal layers. Forward modeling and inversion methods can mitigate the aforementioned effects and improve the accuracy of true layer properties in the presence of mud-filtrate invasion and borehole environmental and 3D geometrical effects across spatially complex formations. This dissertation introduces a fast and accurate algorithm to simulate borehole NMR measurements using the concept of spatial sensitivity functions (SSFs) that honor NMR physics and explicitly incorporate tool, borehole, and geometrical properties. To that end, a 3D multiphysics forward model is developed that couples NMR tool properties, magnetization time evolution, and electromagnetic propagation to derive the 3D spatial sensitivity maps associated with a specific borehole instrument. Additionally, a multifluid relaxation model based on Brownstein-Tarr’s equation is introduced to estimate layer-by-layer NMR porosity decays and relaxation-diffusion correlations from pore-size-dependent rock and fluid properties. The latter model is convolved with the SSFs to reproduce borehole NMR measurements acquired with advanced pulsing sequences (e.g., diffusion-editing and saturation recovery sequences). Results indicate that the spatial sensitivity of NMR measurements is controlled by porosity, electrical conductivity, excitation pulse duration, and tool geometry. The SSF-derived forward approximation is benchmarked and verified against 3D multiphysics simulations for a series of synthetic cases with variable bed thickness and petrophysical properties, as well as in the presence of mud-filtrate invasion. It is shown that the approximation can be executed in a few seconds of central processing unit (CPU), by a factor of 1000 times faster than rigorous multiphysics calculations, with maximum root-mean- square errors (RMSE) of 1%. On average, the fast approximation via SSFs reproduces borehole NMR measurements in 0.08 seconds of CPU time per logging measurement and can therefore be used for real-time calculations and interpretations. Next, the NMR forward modeling approximation is implemented to simulate measurements acquired across dipping formations penetrated by deviated wells in the presence of mud-filtrate invasion. Borehole NMR measurements are simulated by transforming a dipping layered model penetrated by an arbitrary well trajectory into an apparent layered model probed by a vertical well. This work compares the effect of radial length of investigation (DOI) from the three distinct NMR acquisition shells at 3.81 cm (1 in), 6.35 cm (2.5 in) and 10.16 cm (4 in), to integrate borehole NMR measurements acquired in 3D complex geometries. It is found that thinly-bedded formations and their petrophysical properties can be resolved with limited measurement resolution in HAHz wells and highly dipping formations. In thinly-bedded layers (e.g., thinner than 0.15 m) probed by a vertical well, spatial averaging effects bias the NMR porosity logs acquired with high vertical resolution (e.g., sampling rate equals to 2.54 cm). Conversely, formation geometrical and petrophysical properties can be accurately estimated across high apparent-dip formations. It is found that the shallower NMR acquisition shell (3.81 cm) is the least affected by bed-boundary averaging with increasing apparent dip. Moreover, the increase in apparent dip shifts the location of apparent bed boundaries. The latter phenomenon is more pronounced at deeper radial DOI. Interpretation procedures must mitigate such geometrical effects to accurately detect true bed boundaries and estimate layer-by-layer petrophysical properties

Rapid Numerical Simulation and Inversion of Nuclear Borehole Measurements Acquired in Vertical and Deviated Wells

Download Rapid Numerical Simulation and Inversion of Nuclear Borehole Measurements Acquired in Vertical and Deviated Wells PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (871 download)

DOWNLOAD NOW!


Book Synopsis Rapid Numerical Simulation and Inversion of Nuclear Borehole Measurements Acquired in Vertical and Deviated Wells by : Alberto Mendoza Chávez

Download or read book Rapid Numerical Simulation and Inversion of Nuclear Borehole Measurements Acquired in Vertical and Deviated Wells written by Alberto Mendoza Chávez and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conventional approach for estimation of in-situ porosity is the combined use of neutron and density logs. These nuclear borehole measurements are influenced by fundamental petrophysical, fluid, and geometrical properties of the probed formation including saturating fluids, matrix composition, mud-filtrate invasion and shoulder beds. Advanced interpretation methods that include numerical modeling and inversion are necessary to reduce environmental effects and non-uniqueness in the estimation of porosity. The objective of this dissertation is two-fold: (1) to develop a numerical procedure to rapidly and accurately simulate nuclear borehole measurements, and (2) to simulate nuclear borehole measurements in conjunction with inversion techniques. Of special interest is the case of composite rock formations of sand-shale laminations penetrated by high-angle and horizontal (HA/HZ) wells. In order to quantify shoulder-bed effects on neutron and density borehole measurements, we perform Monte Carlo simulations across formations of various thicknesses and borehole deviation angles with the multiple-particle transport code MCNP. In so doing, we assume dual-detector tool configurations that are analogous to those of commercial neutron and density wireline measuring devices. Simulations indicate significant variations of vertical (axial) resolution of neutron and density measurements acquired in HA/HZ wells. In addition, combined azimuthal- and dip-angle effects can originate biases on porosity estimation and bed boundary detection, which are critical for the assessment of hydrocarbon reserves. To enable inversion and more quantitative integration with other borehole measurements, we develop and successfully test a linear iterative refinement approximation to rapidly simulate neutron, density, and passive gamma-ray borehole measurements. Linear iterative refinement accounts for spatial variations of Monte Carlo derived flux sensitivity functions (FSFs) used to simulate nuclear measurements acquired in non-homogeneous formations. We use first-order Born approximations to simulate variations of a detector response due to spatial variations of formation energy-dependent cross-section. The method incorporates two- (2D) and three-dimensional (3D) capabilities of FSFs to simulate neutron and density measurements acquired in vertical and HA/HZ wells, respectively. We calculate FSFs for a wide range of formation cross-section variations and for borehole environmental effects to quantify the spatial sensitivity and resolution of neutron and density measurements. Results confirm that the spatial resolution limits of neutron measurements can be significantly influenced by the proximity of layers with large contrasts in porosity. Finally, we implement 2D sector-based inversion of azimuthal logging-while drilling (LWD) density field measurements with the fast simulation technique. Results indicate that inversion improves the petrophysical interpretation of density measurements acquired in HA/HZ wells. Density images constructed with inversion yield improved porosity-feet estimations compared to standard and enhanced compensation techniques used commercially to post-process mono-sensor densities.

Inversion-based Petrophysical Interpretation of Multi-detector Logging-while-drilling Sigma Measurements

Download Inversion-based Petrophysical Interpretation of Multi-detector Logging-while-drilling Sigma Measurements PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 742 pages
Book Rating : 4.:/5 (882 download)

DOWNLOAD NOW!


Book Synopsis Inversion-based Petrophysical Interpretation of Multi-detector Logging-while-drilling Sigma Measurements by : Edwin Yamid Ortega

Download or read book Inversion-based Petrophysical Interpretation of Multi-detector Logging-while-drilling Sigma Measurements written by Edwin Yamid Ortega and published by . This book was released on 2014 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pulsed-neutron borehole measurements involve a physical process in which a source emits energetic neutrons that lose energy upon collisions with formation nuclei, and are eventually captured by a nucleus to form a heavier, excited state. The excited nucleus decays to its ground state by the emission of gamma rays. Both thermal-neutron and gamma-ray populations decay with time at a rate defined by Sigma, which is a nuclear property that quantifies a material's ability to capture thermal neutrons. The large contrast in Sigma between hydrocarbon and salty connate water enables calculations of water saturation directly from pulsed-neutron measurements. Sigma logs have proven useful in the assessment of thinly bedded formations because they exhibit a small volume of investigation, and have been deemed superior to resistivity logs in the petrophysical evaluation of carbonate formations. The recognized potential of Sigma logs in formation evaluation initiated the development of multi-detector Logging-While-Drilling (LWD) Sigma measurements. These measurements are acquired using one thermal-neutron and two gamma-ray detectors at different spacings from the source. Such a design is aimed at providing distinct radial depths of investigation to detect filtrate invasion in the near-wellbore zone. Despite their formation-evaluation potential, multi-detector time-decay measurements commonly remain affected by invasion, shoulder-bed, and well-deviation effects. The purpose of this dissertation is to develop a fast-forward simulation method to reproduce multi-detector time decays and combine the method with inversion techniques to improve the petrophysical interpretation of LWD Sigma measurements. First-order perturbation theory and a library of pre-calculated Monte Carlo detector-specific sensitivity functions and time decays are used to numerically simulate borehole Sigma measurements in realistic logging environments. The new simulation method is one hundred thousand times faster than rigorous Monte Carlo calculations and remains within two capture units of disparity. Next, the fast-forward simulation method is embedded within inversion algorithms to estimate layer-by-layer radial length of invasion and formation Sigma corrected for shallow invasion, shoulder-bed, and well-deviation effects. Both fast-forward and inverse modeling algorithms are benchmarked against laboratory and synthetic time decays. The improvement of formation Sigma obtained with inversion-based interpretation leads to an improvement in the estimation of Sigma-derived water saturation. Likewise, the estimated radial length of invasion is combined with neutron and density measurements to correct the latter for invasion effects. Results indicate that the inversion-based interpretation method is well suited for the evaluation of high-porosity formations invaded by salty mud filtrate. Inversion-based interpretation of field LWD time decays enables the estimation of lower values of water saturation when compared to conventional Sigma interpretation or resistivity methods. Estimated values of water saturation are as much as fifty percent lower than predicted by conventional interpretation of Sigma logs in the case of measurements affected by shoulder-bed effects, and as much as one hundred percent lower than predicted by the conventional interpretation method for measurements additionally affected by salty filtrate invasion. The key attributes of the combined petrophysical interpretation of multi-detector Sigma, neutron, and density measurements developed in this dissertation are that it explicitly enforces the physics of all nuclear measurements, honors the pressure and temperature dependency of reservoir fluid nuclear properties, and takes into account a-priori information such as mud-filtrate salinity, connate-water salinity, and bed-boundary locations.

Petrophysics

Download Petrophysics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 504 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Petrophysics by :

Download or read book Petrophysics written by and published by . This book was released on 2007 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods

Download Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128214546
Total Pages : 312 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods by : David Pardo

Download or read book Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods written by David Pardo and published by Elsevier. This book was released on 2021-05-26 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods provides a comprehensive review of different resistivity and sonic logging instruments used within the oil industry, along with precise and solid mathematical descriptions of the physical equations and corresponding FE formulations that govern these measurements. Additionally, the book emphasizes the main modeling considerations that one needs to incorporate into the simulations in order to obtain reliable and accurate results. Essentially, the formulations and methods described here can also be applied to simulate on-surface geophysical measurements such as seismic or marine controlled-source electromagnetic (CSEM) measurements. Simulation results obtained using FE methods are superior. FE methods employ a mathematical terminology based on FE spaces that facilitate the design of sophisticated formulations and implementations according to the specifics of each problem. This mathematical FE framework provides a highly accurate, robust, and flexible unified environment for the solution of multi-physics problems. Thus, readers will benefit from this resource by learning how to make a variety of logging simulations using a unified FE framework. Provides a complete and unified finite element approach to perform borehole sonic and electromagnetic simulations Includes the latest research in mathematical and implementation content on Finite Element simulations of borehole logging measurements Features a variety of unique simulations and numerical examples that allow the reader to easily learn the main features and limitations that appear when simulating borehole resistivity measurements

Well Seismic Surveying and Acoustic Logging

Download Well Seismic Surveying and Acoustic Logging PDF Online Free

Author :
Publisher :
ISBN 13 : 9782759822638
Total Pages : 0 pages
Book Rating : 4.8/5 (226 download)

DOWNLOAD NOW!


Book Synopsis Well Seismic Surveying and Acoustic Logging by : Jean-Luc Mari

Download or read book Well Seismic Surveying and Acoustic Logging written by Jean-Luc Mari and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approaches that are typically applied in deep exploration geophysics, combining different seismic and logging methods, can be technically adapted for certain geotechnical or hydrogeological surveys or some site characterizations in the framework of seismic hazard studies. Currently it is entirely feasible to implement this type of geophysical surveying if the situation requires. After reviewing the current state of knowledge regarding borehole measurements of subsurface shear velocities applied to the geotechnical field, this book illustrates the feasibility of carrying out vertical seismic profiles (VSPs) and logs in this field. This approach also illustrates the value of combining velocity measurements of formations provided by borehole seismic tools (VSP) and acoustic (sonic) tools. An innovative example of the application of borehole seismic and logging methods is then presented in the case study of a relatively near-surface (from 20 to 130 m) karst carbonate aquifer. It shows how a multi-scale description of the reservoir can be carried out by integrating the information provided by different 3D-THR surface seismic methods, full waveform acoustic logging, VSP with hydrophones, borehole optical televiewer and flow measurements. In this book the authors provide readers with guidelines to carry out these operations, in terms of acquisitions as well as processing and interpretation. Thus, users will be able to draw inspiration to continue transferring petroleum techniques and other innovative methods for use in near-surface studies.

Advances in Near-surface Seismology and Ground-penetrating Radar, Volume 15

Download Advances in Near-surface Seismology and Ground-penetrating Radar, Volume 15 PDF Online Free

Author :
Publisher : SEG Books
ISBN 13 : 1560802243
Total Pages : 513 pages
Book Rating : 4.5/5 (68 download)

DOWNLOAD NOW!


Book Synopsis Advances in Near-surface Seismology and Ground-penetrating Radar, Volume 15 by : Richard D. Miller

Download or read book Advances in Near-surface Seismology and Ground-penetrating Radar, Volume 15 written by Richard D. Miller and published by SEG Books. This book was released on 2010-01-11 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Near-surface Seismology and Ground-penetrating Radar (SEG Geophysical Developments Series No. 15) is a collection of original papers by renowned and respected authors from around the world. Technologies used in the application of near-surface seismology and ground-penetrating radar have seen significant advances in the last several years. Both methods have benefited from new processing tools, increased computer speeds, and an expanded variety of applications. This book, divided into four sections--"Reviews," "Methodology," "Integrative Approaches," and "Case Studies"--Captures the most significant cutting-edge issues in active areas of research, unveiling truly pertinent studies that address fundamental applied problems. This collection of manuscripts grew from a core group of papers presented at a post-convention workshop, "Advances in Near-surface Seismology and Ground-penetrating Radar," held during the 2009 SEG Annual Meeting in Houston, Texas. This is the first cooperative publication effort between the near-surface communities of SEG, AGU, and EEGS. It will appeal to a large and diverse audience that includes researchers and practitioners inside and outside the near-surface geophysics community. --Publisher description.

Rock Fractures and Fluid Flow

Download Rock Fractures and Fluid Flow PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309049962
Total Pages : 568 pages
Book Rating : 4.3/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Rock Fractures and Fluid Flow by : National Research Council

Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-08-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Full Seismic Waveform Modelling and Inversion

Download Full Seismic Waveform Modelling and Inversion PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642158072
Total Pages : 352 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Full Seismic Waveform Modelling and Inversion by : Andreas Fichtner

Download or read book Full Seismic Waveform Modelling and Inversion written by Andreas Fichtner and published by Springer Science & Business Media. This book was released on 2010-11-16 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.

Seismic Inversion

Download Seismic Inversion PDF Online Free

Author :
Publisher : SEG Books
ISBN 13 : 156080341X
Total Pages : 377 pages
Book Rating : 4.5/5 (68 download)

DOWNLOAD NOW!


Book Synopsis Seismic Inversion by : Gerard T. Schuster

Download or read book Seismic Inversion written by Gerard T. Schuster and published by SEG Books. This book was released on 2017-07-01 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.

The Rock Physics Handbook

Download The Rock Physics Handbook PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521861365
Total Pages : 525 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis The Rock Physics Handbook by : Gary Mavko

Download or read book The Rock Physics Handbook written by Gary Mavko and published by Cambridge University Press. This book was released on 2009-04-30 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: A significantly expanded new edition of this practical guide to rock physics and geophysical interpretation for reservoir geophysicists and engineers.

Borehole Imaging

Download Borehole Imaging PDF Online Free

Author :
Publisher : Geological Society of London
ISBN 13 : 9781862390430
Total Pages : 312 pages
Book Rating : 4.3/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Borehole Imaging by : Gail Williamson

Download or read book Borehole Imaging written by Gail Williamson and published by Geological Society of London. This book was released on 1999 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Applied Mechanics Reviews

Download Applied Mechanics Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 348 pages
Book Rating : 4.3/5 (243 download)

DOWNLOAD NOW!


Book Synopsis Applied Mechanics Reviews by :

Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1992 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: