Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Fairness And Machine Learning
Download Fairness And Machine Learning full books in PDF, epub, and Kindle. Read online Fairness And Machine Learning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Fairness and Machine Learning by : Solon Barocas
Download or read book Fairness and Machine Learning written by Solon Barocas and published by MIT Press. This book was released on 2023-12-19 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the intellectual foundations and practical utility of the recent work on fairness and machine learning. Fairness and Machine Learning introduces advanced undergraduate and graduate students to the intellectual foundations of this recently emergent field, drawing on a diverse range of disciplinary perspectives to identify the opportunities and hazards of automated decision-making. It surveys the risks in many applications of machine learning and provides a review of an emerging set of proposed solutions, showing how even well-intentioned applications may give rise to objectionable results. It covers the statistical and causal measures used to evaluate the fairness of machine learning models as well as the procedural and substantive aspects of decision-making that are core to debates about fairness, including a review of legal and philosophical perspectives on discrimination. This incisive textbook prepares students of machine learning to do quantitative work on fairness while reflecting critically on its foundations and its practical utility. • Introduces the technical and normative foundations of fairness in automated decision-making • Covers the formal and computational methods for characterizing and addressing problems • Provides a critical assessment of their intellectual foundations and practical utility • Features rich pedagogy and extensive instructor resources
Book Synopsis The Ethical Algorithm by : Michael Kearns
Download or read book The Ethical Algorithm written by Michael Kearns and published by . This book was released on 2020 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.
Book Synopsis Practical Fairness by : Aileen Nielsen
Download or read book Practical Fairness written by Aileen Nielsen and published by O'Reilly Media. This book was released on 2020-12-01 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fairness is an increasingly important topic as machine learning and AI more generally take over the world. While this is an active area of research, many realistic best practices are emerging at all steps along the data pipeline, from data selection and preprocessing to blackbox model audits. This book will guide you through the technical, legal, and ethical aspects of making your code fair and secure while highlighting cutting edge academic research and ongoing legal developments related to fairness and algorithms. There is mounting evidence that the widespread deployment of machine learning and artificial intelligence in business and government is reproducing the same biases we are trying to fight in the real world. For this reason, fairness is an increasingly important consideration for the data scientist. Yet discussions of what fairness means in terms of actual code are few and far between. This code will show you how to code fairly as well as cover basic concerns related to data security and privacy from a fairness perspective.
Book Synopsis AI and Machine Learning for Coders by : Laurence Moroney
Download or read book AI and Machine Learning for Coders written by Laurence Moroney and published by O'Reilly Media. This book was released on 2020-10-01 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving
Book Synopsis Patterns, Predictions, and Actions: Foundations of Machine Learning by : Moritz Hardt
Download or read book Patterns, Predictions, and Actions: Foundations of Machine Learning written by Moritz Hardt and published by Princeton University Press. This book was released on 2022-08-23 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers
Book Synopsis Big Data and Social Science by : Ian Foster
Download or read book Big Data and Social Science written by Ian Foster and published by CRC Press. This book was released on 2016-08-10 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.
Book Synopsis The LegalTech Book by : Sophia Adams Bhatti
Download or read book The LegalTech Book written by Sophia Adams Bhatti and published by John Wiley & Sons. This book was released on 2020-06-01 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Written by prominent thought leaders in the global FinTech investment space, The LegalTech Book aggregates diverse expertise into a single, informative volume. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: The current status of LegalTech, why now is the time for it to boom, the drivers behind it, and how it relates to FinTech, RegTech, InsurTech and WealthTech Applications of AI, machine learning and deep learning in the practice of law; e-discovery and due diligence; AI as a legal predictor LegalTech making the law accessible to all; online courts, online dispute resolution The Uberization of the law; hiring and firing through apps Lawbots; social media meets legal advice To what extent does LegalTech make lawyers redundant? Cryptocurrencies, distributed ledger technology and the law The Internet of Things, data privacy, automated contracts Cybersecurity and data Technology vs. the law; driverless cars and liability, legal rights of robots, ownership rights over works created by technology Legislators as innovators"--
Book Synopsis Interpretable Machine Learning by : Christoph Molnar
Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Book Synopsis Dictionary of Media and Communications by : Marcel Danesi
Download or read book Dictionary of Media and Communications written by Marcel Danesi and published by Routledge. This book was released on 2014-12-18 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible to wide range of readers from student to lay people, this authoritative reference provides a complete listing of media concepts, figures, and techniques with illustrations and historical commentaries. Written by distinguished scholar and author Marcel Danesi, and with an Introduction by Arthur Asa Berger, a leading figure in the world of media and communications, the dictionary also includes terms related to psychology, linguistics, aesthetics, computer science, semiotics, culture theory, anthropology, and more that have relevance in media studies. Each entry includes a definition in simple, clear language; an illustration where applicable; and, historical commentary (who coined a term for example, why, who uses it, etc.). A bibliography, a directory of online resources, and a time-line of media genres add to the dictionary's usefulness and appeal.
Book Synopsis All of Statistics by : Larry Wasserman
Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Book Synopsis The Black Box Society by : Frank Pasquale
Download or read book The Black Box Society written by Frank Pasquale and published by Harvard University Press. This book was released on 2015-01-05 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every day, corporations are connecting the dots about our personal behavior—silently scrutinizing clues left behind by our work habits and Internet use. The data compiled and portraits created are incredibly detailed, to the point of being invasive. But who connects the dots about what firms are doing with this information? The Black Box Society argues that we all need to be able to do so—and to set limits on how big data affects our lives. Hidden algorithms can make (or ruin) reputations, decide the destiny of entrepreneurs, or even devastate an entire economy. Shrouded in secrecy and complexity, decisions at major Silicon Valley and Wall Street firms were long assumed to be neutral and technical. But leaks, whistleblowers, and legal disputes have shed new light on automated judgment. Self-serving and reckless behavior is surprisingly common, and easy to hide in code protected by legal and real secrecy. Even after billions of dollars of fines have been levied, underfunded regulators may have only scratched the surface of this troubling behavior. Frank Pasquale exposes how powerful interests abuse secrecy for profit and explains ways to rein them in. Demanding transparency is only the first step. An intelligible society would assure that key decisions of its most important firms are fair, nondiscriminatory, and open to criticism. Silicon Valley and Wall Street need to accept as much accountability as they impose on others.
Book Synopsis The Alignment Problem: Machine Learning and Human Values by : Brian Christian
Download or read book The Alignment Problem: Machine Learning and Human Values written by Brian Christian and published by W. W. Norton & Company. This book was released on 2020-10-06 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: A jaw-dropping exploration of everything that goes wrong when we build AI systems and the movement to fix them. Today’s “machine-learning” systems, trained by data, are so effective that we’ve invited them to see and hear for us—and to make decisions on our behalf. But alarm bells are ringing. Recent years have seen an eruption of concern as the field of machine learning advances. When the systems we attempt to teach will not, in the end, do what we want or what we expect, ethical and potentially existential risks emerge. Researchers call this the alignment problem. Systems cull résumés until, years later, we discover that they have inherent gender biases. Algorithms decide bail and parole—and appear to assess Black and White defendants differently. We can no longer assume that our mortgage application, or even our medical tests, will be seen by human eyes. And as autonomous vehicles share our streets, we are increasingly putting our lives in their hands. The mathematical and computational models driving these changes range in complexity from something that can fit on a spreadsheet to a complex system that might credibly be called “artificial intelligence.” They are steadily replacing both human judgment and explicitly programmed software. In best-selling author Brian Christian’s riveting account, we meet the alignment problem’s “first-responders,” and learn their ambitious plan to solve it before our hands are completely off the wheel. In a masterful blend of history and on-the ground reporting, Christian traces the explosive growth in the field of machine learning and surveys its current, sprawling frontier. Readers encounter a discipline finding its legs amid exhilarating and sometimes terrifying progress. Whether they—and we—succeed or fail in solving the alignment problem will be a defining human story. The Alignment Problem offers an unflinching reckoning with humanity’s biases and blind spots, our own unstated assumptions and often contradictory goals. A dazzlingly interdisciplinary work, it takes a hard look not only at our technology but at our culture—and finds a story by turns harrowing and hopeful.
Book Synopsis Recent Trends in Learning From Data by : Luca Oneto
Download or read book Recent Trends in Learning From Data written by Luca Oneto and published by Springer. This book was released on 2021-04-04 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a timely snapshot and extensive practical and theoretical insights into the topic of learning from data. Based on the tutorials presented at the INNS Big Data and Deep Learning Conference, INNSBDDL2019, held on April 16-18, 2019, in Sestri Levante, Italy, the respective chapters cover advanced neural networks, deep architectures, and supervised and reinforcement machine learning models. They describe important theoretical concepts, presenting in detail all the necessary mathematical formalizations, and offer essential guidance on their use in current big data research.
Book Synopsis Oxford Handbook of Ethics of AI by : Markus D. Dubber
Download or read book Oxford Handbook of Ethics of AI written by Markus D. Dubber and published by Oxford University Press. This book was released on 2020-06-30 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."
Book Synopsis Quality of Information and Communications Technology by : Ana C. R. Paiva
Download or read book Quality of Information and Communications Technology written by Ana C. R. Paiva and published by Springer Nature. This book was released on 2021-08-27 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 14th International Conference on the Quality of Information and Communications Technology, QUATIC 2021, held in Algarve, Portugal*, in September 2021. The 30 full papers and 9 short papers were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections: ICT verification and validation; software evolution; process modeling, improvement and assessment; quality aspects in quantum computing; safety, security, and privacy; quality aspects in machine learning, AI and data analytics; evidence-based software quality engineering; quality in cyber-physical systems; software quality education and training. *The conference was held virtually due to the COVID-19 pandemic.
Book Synopsis An Introduction to Ethics in Robotics and AI by : Christoph Bartneck
Download or read book An Introduction to Ethics in Robotics and AI written by Christoph Bartneck and published by Springer Nature. This book was released on 2020-08-11 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book introduces the reader to the foundations of AI and ethics. It discusses issues of trust, responsibility, liability, privacy and risk. It focuses on the interaction between people and the AI systems and Robotics they use. Designed to be accessible for a broad audience, reading this book does not require prerequisite technical, legal or philosophical expertise. Throughout, the authors use examples to illustrate the issues at hand and conclude the book with a discussion on the application areas of AI and Robotics, in particular autonomous vehicles, automatic weapon systems and biased algorithms. A list of questions and further readings is also included for students willing to explore the topic further.
Book Synopsis An Intelligence in Our Image by : Osonde A. Osoba
Download or read book An Intelligence in Our Image written by Osonde A. Osoba and published by Rand Corporation. This book was released on 2017-04-05 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning algorithms and artificial intelligence influence many aspects of life today. This report identifies some of their shortcomings and associated policy risks and examines some approaches for combating these problems.