Exponential Attractors for Dissipative Evolution Equations

Download Exponential Attractors for Dissipative Evolution Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 200 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Exponential Attractors for Dissipative Evolution Equations by : A. Eden

Download or read book Exponential Attractors for Dissipative Evolution Equations written by A. Eden and published by . This book was released on 1994 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering a pioneering area of dynamical systems, this monograph includes references, Navier-Stokes equations and many applications which should be of particular interest to those working in the field of fluid mechanics.

Exponential Attractors for Dissipative Evolution Equations

Download Exponential Attractors for Dissipative Evolution Equations PDF Online Free

Author :
Publisher : Elsevier Masson
ISBN 13 : 9782225843068
Total Pages : 182 pages
Book Rating : 4.8/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Exponential Attractors for Dissipative Evolution Equations by : Alp Eden

Download or read book Exponential Attractors for Dissipative Evolution Equations written by Alp Eden and published by Elsevier Masson. This book was released on 1994 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exponentiol Attractors is a new area of Dynamical Systems, pioneered to a large extent by the authors of this book. Their aim was to develop and present the theory of Exponentiol Attractors for Dissipative Evolutîon Equations, mostly of infinite dimension. Exponentiol Attractors represent "realistic" abjects intermediate between the two "ideal" ones which are the global Attractors and the Inertiel Manifolds. All three abjects describe the long time behaviour of dynamical systems. The book is written in the style of a text appropriate for a graduate courses. With its applications, for example, ta Novier-Stokes equations as well as ta many other related partial differential equations of mathematical physics, this work is of particular interest ta those interested in the connections between fluid mechanics, partial differential equations and dynamical systems.

Attractors for Semigroups and Evolution Equations

Download Attractors for Semigroups and Evolution Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009229796
Total Pages : pages
Book Rating : 4.0/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Attractors for Semigroups and Evolution Equations by : Olga A. Ladyzhenskaya

Download or read book Attractors for Semigroups and Evolution Equations written by Olga A. Ladyzhenskaya and published by Cambridge University Press. This book was released on 2022-06-09 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, Olga A. Ladyzhenskaya expands on her highly successful 1991 Accademia Nazionale dei Lincei lectures. The lectures were devoted to questions of the behaviour of trajectories for semigroups of nonlinear bounded continuous operators in a locally non-compact metric space and for solutions of abstract evolution equations. The latter contain many initial boundary value problems for dissipative partial differential equations. This work, for which Ladyzhenskaya was awarded the Russian Academy of Sciences' Kovalevskaya Prize, reflects the high calibre of her lectures; it is essential reading for anyone interested in her approach to partial differential equations and dynamical systems. This edition, reissued for her centenary, includes a new technical introduction, written by Gregory A. Seregin, Varga K. Kalantarov and Sergey V. Zelik, surveying Ladyzhenskaya's works in the field and subsequent developments influenced by her results.

Handbook of Differential Equations: Evolutionary Equations

Download Handbook of Differential Equations: Evolutionary Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080931979
Total Pages : 609 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Differential Equations: Evolutionary Equations by : C.M. Dafermos

Download or read book Handbook of Differential Equations: Evolutionary Equations written by C.M. Dafermos and published by Elsevier. This book was released on 2008-10-06 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE's, written by leading experts.- Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts

Abstract Parabolic Evolution Equations and their Applications

Download Abstract Parabolic Evolution Equations and their Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642046312
Total Pages : 594 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Abstract Parabolic Evolution Equations and their Applications by : Atsushi Yagi

Download or read book Abstract Parabolic Evolution Equations and their Applications written by Atsushi Yagi and published by Springer Science & Business Media. This book was released on 2009-11-03 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0

Attractors of Evolution Equations

Download Attractors of Evolution Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080875467
Total Pages : 543 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Attractors of Evolution Equations by : A.V. Babin

Download or read book Attractors of Evolution Equations written by A.V. Babin and published by Elsevier. This book was released on 1992-03-09 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.

Von Karman Evolution Equations

Download Von Karman Evolution Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387877126
Total Pages : 777 pages
Book Rating : 4.3/5 (878 download)

DOWNLOAD NOW!


Book Synopsis Von Karman Evolution Equations by : Igor Chueshov

Download or read book Von Karman Evolution Equations written by Igor Chueshov and published by Springer Science & Business Media. This book was released on 2010-04-08 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the study of mathematical models that arise in the context of concrete - plications, the following two questions are of fundamental importance: (i) we- posedness of the model, including existence and uniqueness of solutions; and (ii) qualitative properties of solutions. A positive answer to the ?rst question, - ing of prime interest on purely mathematical grounds, also provides an important test of the viability of the model as a description of a given physical phenomenon. An answer or insight to the second question provides a wealth of information about the model, hence about the process it describes. Of particular interest are questions related to long-time behavior of solutions. Such an evolution property cannot be v- i?ed empirically, thus any in a-priori information about the long-time asymptotics can be used in predicting an ultimate long-time response and dynamical behavior of solutions. In recent years, this set of investigations has attracted a great deal of attention. Consequent efforts have then resulted in the creation and infusion of new methods and new tools that have been responsible for carrying out a successful an- ysis of long-time behavior of several classes of nonlinear PDEs.

Attractors for Degenerate Parabolic Type Equations

Download Attractors for Degenerate Parabolic Type Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470409852
Total Pages : 233 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Attractors for Degenerate Parabolic Type Equations by : Messoud Efendiev

Download or read book Attractors for Degenerate Parabolic Type Equations written by Messoud Efendiev and published by American Mathematical Soc.. This book was released on 2013-09-26 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the long-time behavior of solutions of degenerate parabolic dissipative equations arising in the study of biological, ecological, and physical problems. Examples include porous media equations, -Laplacian and doubly nonlinear equations, as well as degenerate diffusion equations with chemotaxis and ODE-PDE coupling systems. For the first time, the long-time dynamics of various classes of degenerate parabolic equations, both semilinear and quasilinear, are systematically studied in terms of their global and exponential attractors. The long-time behavior of many dissipative systems generated by evolution equations of mathematical physics can be described in terms of global attractors. In the case of dissipative PDEs in bounded domains, this attractor usually has finite Hausdorff and fractal dimension. Hence, if the global attractor exists, its defining property guarantees that the dynamical system reduced to the attractor contains all of the nontrivial dynamics of the original system. Moreover, the reduced phase space is really "thinner" than the initial phase space. However, in contrast to nondegenerate parabolic type equations, for a quite large class of degenerate parabolic type equations, their global attractors can have infinite fractal dimension. The main goal of the present book is to give a detailed and systematic study of the well-posedness and the dynamics of the semigroup associated to important degenerate parabolic equations in terms of their global and exponential attractors. Fundamental topics include existence of attractors, convergence of the dynamics and the rate of convergence, as well as the determination of the fractal dimension and the Kolmogorov entropy of corresponding attractors. The analysis and results in this book show that there are new effects related to the attractor of such degenerate equations that cannot be observed in the case of nondegenerate equations in bounded domains. This book is published in cooperation with Real Sociedad Matemática Española (RSME).

Dissipative Lattice Dynamical Systems

Download Dissipative Lattice Dynamical Systems PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811267774
Total Pages : 381 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Dissipative Lattice Dynamical Systems by : Xiaoying Han

Download or read book Dissipative Lattice Dynamical Systems written by Xiaoying Han and published by World Scientific. This book was released on 2023-03-14 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is an extensive literature in the form of papers (but no books) on lattice dynamical systems. The book focuses on dissipative lattice dynamical systems and their attractors of various forms such as autonomous, nonautonomous and random. The existence of such attractors is established by showing that the corresponding dynamical system has an appropriate kind of absorbing set and is asymptotically compact in some way.There is now a very large literature on lattice dynamical systems, especially on attractors of all kinds in such systems. We cannot hope to do justice to all of them here. Instead, we have focused on key areas of representative types of lattice systems and various types of attractors. Our selection is biased by our own interests, in particular to those dealing with biological applications. One of the important results is the approximation of Heaviside switching functions in LDS by sigmoidal functions.Nevertheless, we believe that this book will provide the reader with a solid introduction to the field, its main results and the methods that are used to obtain them.

Attractors for Equations of Mathematical Physics

Download Attractors for Equations of Mathematical Physics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821829505
Total Pages : 377 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Attractors for Equations of Mathematical Physics by : Vladimir V. Chepyzhov

Download or read book Attractors for Equations of Mathematical Physics written by Vladimir V. Chepyzhov and published by American Mathematical Soc.. This book was released on 2002 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For anumber of basic evolution equations of mathematical physics, it was shown that the long time behavior of their solutions can be characterized by a very important notion of a global attractor of the equation. In this book, the authors study new problems related to the theory of infinite-dimensionaldynamical systems that were intensively developed during the last 20 years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier-Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg-Landau equation, and others. Since, as it is shown, the attractors usually have infinite dimension, the research is focused on the Kolmogorov $\varepsilon$-entropy of attractors. Upperestimates for the $\varepsilon$-entropy of uniform attractors of non-autonomous equations in terms of $\varepsilon$-entropy of time-dependent coefficients are proved. Also, the authors construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchyproblem is not unique or the uniqueness is not proved. The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect tospatial and time variables. It is shown that the attractors of these equations are contained in a thin neighborhood of the attractor of the averaged equation. The book gives systematic treatment to the theory of attractors of autonomous and non-autonomous evolution equations of mathematical physics.It can be used both by specialists and by those who want to get acquainted with this rapidly growing and important area of mathematics.

Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping

Download Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821841874
Total Pages : 200 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping by : Igor Chueshov

Download or read book Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping written by Igor Chueshov and published by American Mathematical Soc.. This book was released on 2008 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors consider abstract nonlinear second order evolution equations with a nonlinear damping. Questions related to long time behavior, existence and structure of global attractors are studied. Particular emphasis is put on dynamics which--in addition to nonlinear dissipation-- have noncompact semilinear terms and whose energy may not be necessarily decreasing. For such systems the authors first develop a general theory at the abstract level. They then apply the general theoryto nonlinear wave and plate equations exhibiting the aforementioned characteristics and are able to provide new results pertaining to several open problems in the area of structure and properties of global attractors arising in this class of PDE dynamics.

Attractors Under Autonomous and Non-autonomous Perturbations

Download Attractors Under Autonomous and Non-autonomous Perturbations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470453088
Total Pages : 259 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Attractors Under Autonomous and Non-autonomous Perturbations by : Matheus C. Bortolan

Download or read book Attractors Under Autonomous and Non-autonomous Perturbations written by Matheus C. Bortolan and published by American Mathematical Soc.. This book was released on 2020-05-29 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive study of how attractors behave under perturbations for both autonomous and non-autonomous problems. Furthermore, the forward asymptotics of non-autonomous dynamical systems is presented here for the first time in a unified manner. When modelling real world phenomena imprecisions are unavoidable. On the other hand, it is paramount that mathematical models reflect the modelled phenomenon, in spite of unimportant neglectable influences discounted by simplifications, small errors introduced by empirical laws or measurements, among others. The authors deal with this issue by investigating the permanence of dynamical structures and continuity properties of the attractor. This is done in both the autonomous (time independent) and non-autonomous (time dependent) framework in four distinct levels of approximation: the upper semicontinuity, lower semicontinuity, topological structural stability and geometrical structural stability. This book is aimed at graduate students and researchers interested in dissipative dynamical systems and stability theory, and requires only a basic background in metric spaces, functional analysis and, for the applications, techniques of ordinary and partial differential equations.

Dimensions, Embeddings, and Attractors

Download Dimensions, Embeddings, and Attractors PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139495186
Total Pages : 219 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Dimensions, Embeddings, and Attractors by : James C. Robinson

Download or read book Dimensions, Embeddings, and Attractors written by James C. Robinson and published by Cambridge University Press. This book was released on 2010-12-16 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible research monograph investigates how 'finite-dimensional' sets can be embedded into finite-dimensional Euclidean spaces. The first part brings together a number of abstract embedding results, and provides a unified treatment of four definitions of dimension that arise in disparate fields: Lebesgue covering dimension (from classical 'dimension theory'), Hausdorff dimension (from geometric measure theory), upper box-counting dimension (from dynamical systems), and Assouad dimension (from the theory of metric spaces). These abstract embedding results are applied in the second part of the book to the finite-dimensional global attractors that arise in certain infinite-dimensional dynamical systems, deducing practical consequences from the existence of such attractors: a version of the Takens time-delay embedding theorem valid in spatially extended systems, and a result on parametrisation by point values. This book will appeal to all researchers with an interest in dimension theory, particularly those working in dynamical systems.

Qualitative and Quantitative Analysis of Nonlinear Systems

Download Qualitative and Quantitative Analysis of Nonlinear Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319598406
Total Pages : 265 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Qualitative and Quantitative Analysis of Nonlinear Systems by : Michael Z. Zgurovsky

Download or read book Qualitative and Quantitative Analysis of Nonlinear Systems written by Michael Z. Zgurovsky and published by Springer. This book was released on 2017-07-11 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, the authors present modern methods of analysis for nonlinear systems which may occur in fields such as physics, chemistry, biology, or economics. They concentrate on the following topics, specific for such systems: (a) constructive existence results and regularity theorems for all weak solutions; (b) convergence results for solutions and their approximations; (c) uniform global behavior of solutions in time; and (d) pointwise behavior of solutions for autonomous problems with possible gaps by the phase variables. The general methodology for the investigation of dissipative dynamical systems with several applications including nonlinear parabolic equations of divergent form, nonlinear stochastic equations of parabolic type, unilateral problems, nonlinear PDEs on Riemannian manifolds with or without boundary, contact problems as well as particular examples is established. As such, the book is addressed to a wide circle of mathematical, mechanical and engineering readers.

Recent Advances in Differential Equations

Download Recent Advances in Differential Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000724549
Total Pages : 260 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Differential Equations by : H-H Dai

Download or read book Recent Advances in Differential Equations written by H-H Dai and published by CRC Press. This book was released on 2020-01-30 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: The First Pan-China Conference on Differential Equations was held in Kunming, China in June of 1997. Researchers from around the world attended-including representatives from the US, Canada, and the Netherlands-but the majority of the speakers hailed from China and Hong Kong. This volume contains the plenary lectures and invited talks presented at that conference, and provides an excellent view of the research on differential equations being carried out in China. Most of the subjects addressed arose from actual applications and cover ordinary and partial differential equations. Topics include:

Infinite-Dimensional Dynamical Systems in Mechanics and Physics

Download Infinite-Dimensional Dynamical Systems in Mechanics and Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461206456
Total Pages : 670 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Infinite-Dimensional Dynamical Systems in Mechanics and Physics by : Roger Temam

Download or read book Infinite-Dimensional Dynamical Systems in Mechanics and Physics written by Roger Temam and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.

Control Methods in PDE-Dynamical Systems

Download Control Methods in PDE-Dynamical Systems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821837664
Total Pages : 416 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Control Methods in PDE-Dynamical Systems by : Fabio Ancona

Download or read book Control Methods in PDE-Dynamical Systems written by Fabio Ancona and published by American Mathematical Soc.. This book was released on 2007 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: While rooted in controlled PDE systems, this 2005 AMS-IMS-SIAM Summer Research Conference sought to reach out to a rather distinct, yet scientifically related, research community in mathematics interested in PDE-based dynamical systems. Indeed, this community is also involved in the study of dynamical properties and asymptotic long-time behavior (in particular, stability) of PDE-mixed problems. It was the editors' conviction that the time had become ripe and the circumstances propitious for these two mathematical communities--that of PDE control and optimization theorists and that of dynamical specialists--to come together in order to share recent advances and breakthroughs in their respective disciplines. This conviction was further buttressed by recent discoveries that certain energy methods, initially devised for control-theoretic a-priori estimates, once combined with dynamical systems techniques, yield wholly new asymptotic results on well-established, nonlinear PDE systems, particularly hyperb These expectations are now particularly well reflected in the contributions to this volume, which involve nonlinear parabolic, as well as hyperbolic, equations and their attractors; aero-elasticity, elastic systems; Euler-Korteweg models; thin-film equations; Schrodinger equations; beam equations; etc. in addition, the static topics of Helmholtz and Morrey potentials are also prominently featured. A special component of the present volume focuses on hyperbolic conservation laws, to take advantage of recent theoretical advances with significant implications also on applied problems. in all these areas, the reader will find state-of-the-art accounts as stimulating starting points for further research.