Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Explainable, Interpretable, and Transparent AI Systems

Download Explainable, Interpretable, and Transparent AI Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1040099939
Total Pages : 355 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Explainable, Interpretable, and Transparent AI Systems by : B. K. Tripathy

Download or read book Explainable, Interpretable, and Transparent AI Systems written by B. K. Tripathy and published by CRC Press. This book was released on 2024-08-23 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transparent Artificial Intelligence (AI) systems facilitate understanding of the decision-making process and provide opportunities in various aspects of explaining AI models. This book provides up-to-date information on the latest advancements in the field of explainable AI, which is a critical requirement of AI, Machine Learning (ML), and Deep Learning (DL) models. It provides examples, case studies, latest techniques, and applications from domains such as healthcare, finance, and network security. It also covers open-source interpretable tool kits so that practitioners can use them in their domains. Features: Presents a clear focus on the application of explainable AI systems while tackling important issues of “interpretability” and “transparency”. Reviews adept handling with respect to existing software and evaluation issues of interpretability. Provides insights into simple interpretable models such as decision trees, decision rules, and linear regression. Focuses on interpreting black box models like feature importance and accumulated local effects. Discusses capabilities of explainability and interpretability. This book is aimed at graduate students and professionals in computer engineering and networking communications.

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Download Explainable AI: Interpreting, Explaining and Visualizing Deep Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030289540
Total Pages : 435 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Explainable AI: Interpreting, Explaining and Visualizing Deep Learning by : Wojciech Samek

Download or read book Explainable AI: Interpreting, Explaining and Visualizing Deep Learning written by Wojciech Samek and published by Springer Nature. This book was released on 2019-09-10 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges

Download Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 1643680811
Total Pages : 314 pages
Book Rating : 4.6/5 (436 download)

DOWNLOAD NOW!


Book Synopsis Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges by : I. Tiddi

Download or read book Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges written by I. Tiddi and published by IOS Press. This book was released on 2020-05-06 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.

Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance

Download Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030755215
Total Pages : 167 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance by : Tom Rutkowski

Download or read book Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance written by Tom Rutkowski and published by Springer Nature. This book was released on 2021-06-07 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. The vast majority of AI models work like black box models. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations. Therefore, the development of artificial intelligence cannot ignore the need for interpretable, transparent, and explainable models. First, the main idea of the explainable recommenders is outlined within the background of neuro-fuzzy systems. In turn, various novel recommenders are proposed, each characterized by achieving high accuracy with a reasonable number of interpretable fuzzy rules. The main part of the book is devoted to a very challenging problem of stock market recommendations. An original concept of the explainable recommender, based on patterns from previous transactions, is developed; it recommends stocks that fit the strategy of investors, and its recommendations are explainable for investment advisers.

Embedded Systems and Artificial Intelligence

Download Embedded Systems and Artificial Intelligence PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811509476
Total Pages : 880 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Embedded Systems and Artificial Intelligence by : Vikrant Bhateja

Download or read book Embedded Systems and Artificial Intelligence written by Vikrant Bhateja and published by Springer Nature. This book was released on 2020-04-07 with total page 880 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected research papers presented at the First International Conference on Embedded Systems and Artificial Intelligence (ESAI 2019), held at Sidi Mohamed Ben Abdellah University, Fez, Morocco, on 2–3 May 2019. Highlighting the latest innovations in Computer Science, Artificial Intelligence, Information Technologies, and Embedded Systems, the respective papers will encourage and inspire researchers, industry professionals, and policymakers to put these methods into practice.

Deep Learning in Gaming and Animations

Download Deep Learning in Gaming and Animations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781032139302
Total Pages : 0 pages
Book Rating : 4.1/5 (393 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning in Gaming and Animations by : Moolchand Sharma

Download or read book Deep Learning in Gaming and Animations written by Moolchand Sharma and published by CRC Press. This book was released on 2024-10-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text discusses the core concepts and principles of deep learning in gaming and animation with applications in a single volume. It will be a useful reference text for graduate students, and professionals in diverse areas such as electrical engineering, electronics and communication engineering, computer science, gaming and animation.

Responsible Artificial Intelligence

Download Responsible Artificial Intelligence PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030303713
Total Pages : 133 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Responsible Artificial Intelligence by : Virginia Dignum

Download or read book Responsible Artificial Intelligence written by Virginia Dignum and published by Springer Nature. This book was released on 2019-11-04 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the author examines the ethical implications of Artificial Intelligence systems as they integrate and replace traditional social structures in new sociocognitive-technological environments. She discusses issues related to the integrity of researchers, technologists, and manufacturers as they design, construct, use, and manage artificially intelligent systems; formalisms for reasoning about moral decisions as part of the behavior of artificial autonomous systems such as agents and robots; and design methodologies for social agents based on societal, moral, and legal values. Throughout the book the author discusses related work, conscious of both classical, philosophical treatments of ethical issues and the implications in modern, algorithmic systems, and she combines regular references and footnotes with suggestions for further reading. This short overview is suitable for undergraduate students, in both technical and non-technical courses, and for interested and concerned researchers, practitioners, and citizens.

Rule Extraction from Support Vector Machines

Download Rule Extraction from Support Vector Machines PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540753907
Total Pages : 267 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Rule Extraction from Support Vector Machines by : Joachim Diederich

Download or read book Rule Extraction from Support Vector Machines written by Joachim Diederich and published by Springer. This book was released on 2007-12-27 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Support vector machines (SVMs) are one of the most active research areas in machine learning. SVMs have shown good performance in a number of applications, including text and image classification. However, the learning capability of SVMs comes at a cost – an inherent inability to explain in a comprehensible form, the process by which a learning result was reached. Hence, the situation is similar to neural networks, where the apparent lack of an explanation capability has led to various approaches aiming at extracting symbolic rules from neural networks. For SVMs to gain a wider degree of acceptance in fields such as medical diagnosis and security sensitive areas, it is desirable to offer an explanation capability. User explanation is often a legal requirement, because it is necessary to explain how a decision was reached or why it was made. This book provides an overview of the field and introduces a number of different approaches to extracting rules from support vector machines developed by key researchers. In addition, successful applications are outlined and future research opportunities are discussed. The book is an important reference for researchers and graduate students, and since it provides an introduction to the topic, it will be important in the classroom as well. Because of the significance of both SVMs and user explanation, the book is of relevance to data mining practitioners and data analysts.

Explanatory Model Analysis

Download Explanatory Model Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429651376
Total Pages : 312 pages
Book Rating : 4.4/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Explanatory Model Analysis by : Przemyslaw Biecek

Download or read book Explanatory Model Analysis written by Przemyslaw Biecek and published by CRC Press. This book was released on 2021-02-15 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.

Explainable and Transparent AI and Multi-Agent Systems

Download Explainable and Transparent AI and Multi-Agent Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030820173
Total Pages : 345 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Explainable and Transparent AI and Multi-Agent Systems by : Davide Calvaresi

Download or read book Explainable and Transparent AI and Multi-Agent Systems written by Davide Calvaresi and published by Springer Nature. This book was released on 2021-07-16 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the Third International Workshop on Explainable, Transparent AI and Multi-Agent Systems, EXTRAAMAS 2021, which was held virtually due to the COVID-19 pandemic. The 19 long revised papers and 1 short contribution were carefully selected from 32 submissions. The papers are organized in the following topical sections: XAI & machine learning; XAI vision, understanding, deployment and evaluation; XAI applications; XAI logic and argumentation; decentralized and heterogeneous XAI.

Hands-On Explainable AI (XAI) with Python

Download Hands-On Explainable AI (XAI) with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800202768
Total Pages : 455 pages
Book Rating : 4.8/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Explainable AI (XAI) with Python by : Denis Rothman

Download or read book Hands-On Explainable AI (XAI) with Python written by Denis Rothman and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Resolve the black box models in your AI applications to make them fair, trustworthy, and secure. Familiarize yourself with the basic principles and tools to deploy Explainable AI (XAI) into your apps and reporting interfaces. Key FeaturesLearn explainable AI tools and techniques to process trustworthy AI resultsUnderstand how to detect, handle, and avoid common issues with AI ethics and biasIntegrate fair AI into popular apps and reporting tools to deliver business value using Python and associated toolsBook Description Effectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex. Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications. You will build XAI solutions in Python, TensorFlow 2, Google Cloud’s XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle. You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces. By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI. What you will learnPlan for XAI through the different stages of the machine learning life cycleEstimate the strengths and weaknesses of popular open-source XAI applicationsExamine how to detect and handle bias issues in machine learning dataReview ethics considerations and tools to address common problems in machine learning dataShare XAI design and visualization best practicesIntegrate explainable AI results using Python modelsUse XAI toolkits for Python in machine learning life cycles to solve business problemsWho this book is for This book is not an introduction to Python programming or machine learning concepts. You must have some foundational knowledge and/or experience with machine learning libraries such as scikit-learn to make the most out of this book. Some of the potential readers of this book include: Professionals who already use Python for as data science, machine learning, research, and analysisData analysts and data scientists who want an introduction into explainable AI tools and techniquesAI Project managers who must face the contractual and legal obligations of AI Explainability for the acceptance phase of their applications

Explainable AI in Health Informatics

Download Explainable AI in Health Informatics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819737052
Total Pages : 287 pages
Book Rating : 4.8/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Explainable AI in Health Informatics by : Rajanikanth Aluvalu

Download or read book Explainable AI in Health Informatics written by Rajanikanth Aluvalu and published by Springer Nature. This book was released on with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Deep Learning Techniques for Biomedical and Health Informatics

Download Deep Learning Techniques for Biomedical and Health Informatics PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128190620
Total Pages : 370 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Techniques for Biomedical and Health Informatics by : Basant Agarwal

Download or read book Deep Learning Techniques for Biomedical and Health Informatics written by Basant Agarwal and published by Academic Press. This book was released on 2020-01-14 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing. - Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring - Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making - Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis

Interpretable Machine Learning with Python

Download Interpretable Machine Learning with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800206577
Total Pages : 737 pages
Book Rating : 4.8/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning with Python by : Serg Masís

Download or read book Interpretable Machine Learning with Python written by Serg Masís and published by Packt Publishing Ltd. This book was released on 2021-03-26 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: A deep and detailed dive into the key aspects and challenges of machine learning interpretability, complete with the know-how on how to overcome and leverage them to build fairer, safer, and more reliable models Key Features Learn how to extract easy-to-understand insights from any machine learning model Become well-versed with interpretability techniques to build fairer, safer, and more reliable models Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models Book DescriptionDo you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning. What you will learn Recognize the importance of interpretability in business Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes Become well-versed in interpreting models with model-agnostic methods Visualize how an image classifier works and what it learns Understand how to mitigate the influence of bias in datasets Discover how to make models more reliable with adversarial robustness Use monotonic constraints to make fairer and safer models Who this book is for This book is primarily written for data scientists, machine learning developers, and data stewards who find themselves under increasing pressures to explain the workings of AI systems, their impacts on decision making, and how they identify and manage bias. It’s also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a solid grasp on the Python programming language and ML fundamentals is needed to follow along.

After the Digital Tornado

Download After the Digital Tornado PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108645259
Total Pages : 251 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis After the Digital Tornado by : Kevin Werbach

Download or read book After the Digital Tornado written by Kevin Werbach and published by Cambridge University Press. This book was released on 2020-07-23 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Networks powered by algorithms are pervasive. Major contemporary technology trends - Internet of Things, Big Data, Digital Platform Power, Blockchain, and the Algorithmic Society - are manifestations of this phenomenon. The internet, which once seemed an unambiguous benefit to society, is now the basis for invasions of privacy, massive concentrations of power, and wide-scale manipulation. The algorithmic networked world poses deep questions about power, freedom, fairness, and human agency. The influential 1997 Federal Communications Commission whitepaper “Digital Tornado” hailed the “endless spiral of connectivity” that would transform society, and today, little remains untouched by digital connectivity. Yet fundamental questions remain unresolved, and even more serious challenges have emerged. This important collection, which offers a reckoning and a foretelling, features leading technology scholars who explain the legal, business, ethical, technical, and public policy challenges of building pervasive networks and algorithms for the benefit of humanity. This title is also available as Open Access on Cambridge Core.

Complex, Intelligent and Software Intensive Systems

Download Complex, Intelligent and Software Intensive Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030797252
Total Pages : 761 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Complex, Intelligent and Software Intensive Systems by : Leonard Barolli

Download or read book Complex, Intelligent and Software Intensive Systems written by Leonard Barolli and published by Springer Nature. This book was released on 2021-06-29 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes the proceedings of the 15th International Conference on Complex, Intelligent, and Software Intensive Systems, which took place in Asan, Korea, on July 1–3, 2021. Software intensive systems are systems, which heavily interact with other systems, sensors, actuators, devices, and other software systems and users. More and more domains are involved with software intensive systems, e.g., automotive, telecommunication systems, embedded systems in general, industrial automation systems, and business applications. Moreover, the outcome of web services delivers a new platform for enabling software intensive systems. Complex systems research is focused on the overall understanding of systems rather than its components. Complex systems are very much characterized by the changing environments in which they act by their multiple internal and external interactions. They evolve and adapt through internal and external dynamic interactions. The development of intelligent systems and agents, which is each time more characterized by the use of ontologies and their logical foundations build a fruitful impulse for both software intensive systems and complex systems. Recent research in the field of intelligent systems, robotics, neuroscience, artificial intelligence, and cognitive sciences is very important factor for the future development and innovation of software intensive and complex systems. The aim of the book is to deliver a platform of scientific interaction between the three interwoven challenging areas of research and development of future ICT-enabled applications: Software intensive systems, complex systems, and intelligent systems.