Probabilistic Networks and Expert Systems

Download Probabilistic Networks and Expert Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387718231
Total Pages : 340 pages
Book Rating : 4.7/5 (182 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Networks and Expert Systems by : Robert G. Cowell

Download or read book Probabilistic Networks and Expert Systems written by Robert G. Cowell and published by Springer Science & Business Media. This book was released on 2007-07-16 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic expert systems are graphical networks which support the modeling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures, and algorithms. The book will be of interest to researchers in both artificial intelligence and statistics, who desire an introduction to this fascinating and rapidly developing field. The book, winner of the DeGroot Prize 2002, the only book prize in the field of statistics, is new in paperback.

Expert Systems and Probabilistic Network Models

Download Expert Systems and Probabilistic Network Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461222702
Total Pages : 612 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Expert Systems and Probabilistic Network Models by : Enrique Castillo

Download or read book Expert Systems and Probabilistic Network Models written by Enrique Castillo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence and expert systems have seen a great deal of research in recent years, much of which has been devoted to methods for incorporating uncertainty into models. This book is devoted to providing a thorough and up-to-date survey of this field for researchers and students.

Interactive Collaborative Information Systems

Download Interactive Collaborative Information Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642116884
Total Pages : 598 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Interactive Collaborative Information Systems by : Robert Babuška

Download or read book Interactive Collaborative Information Systems written by Robert Babuška and published by Springer. This book was released on 2010-03-22 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing complexity of our world demands new perspectives on the role of technology in decision making. Human decision making has its li- tations in terms of information-processing capacity. We need new technology to cope with the increasingly complex and information-rich nature of our modern society. This is particularly true for critical environments such as crisis management and tra?c management, where humans need to engage in close collaborations with arti?cial systems to observe and understand the situation and respond in a sensible way. We believe that close collaborations between humans and arti?cial systems will become essential and that the importance of research into Interactive Collaborative Information Systems (ICIS) is self-evident. Developments in information and communication technology have ra- cally changed our working environments. The vast amount of information available nowadays and the wirelessly networked nature of our modern so- ety open up new opportunities to handle di?cult decision-making situations such as computer-supported situation assessment and distributed decision making. To make good use of these new possibilities, we need to update our traditional views on the role and capabilities of information systems. The aim of the Interactive Collaborative Information Systems project is to develop techniques that support humans in complex information en- ronments and that facilitate distributed decision-making capabilities. ICIS emphasizes the importance of building actor-agent communities: close c- laborations between human and arti?cial actors that highlight their comp- mentary capabilities, and in which task distribution is ?exible and adaptive.

Probabilistic Reasoning in Expert Systems

Download Probabilistic Reasoning in Expert Systems PDF Online Free

Author :
Publisher : CreateSpace
ISBN 13 : 9781477452547
Total Pages : 448 pages
Book Rating : 4.4/5 (525 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Reasoning in Expert Systems by : Richard E. Neapolitan

Download or read book Probabilistic Reasoning in Expert Systems written by Richard E. Neapolitan and published by CreateSpace. This book was released on 2012-06-01 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a reprint of the seminal 1989 book Probabilistic Reasoning in Expert systems: Theory and Algorithms, which helped serve to create the field we now call Bayesian networks. It introduces the properties of Bayesian networks (called causal networks in the text), discusses algorithms for doing inference in Bayesian networks, covers abductive inference, and provides an introduction to decision analysis. Furthermore, it compares rule-base experts systems to ones based on Bayesian networks, and it introduces the frequentist and Bayesian approaches to probability. Finally, it provides a critique of the maximum entropy formalism. Probabilistic Reasoning in Expert Systems was written from the perspective of a mathematician with the emphasis being on the development of theorems and algorithms. Every effort was made to make the material accessible. There are ample examples throughout the text. This text is important reading for anyone interested in both the fundamentals of Bayesian networks and in the history of how they came to be. It also provides an insightful comparison of the two most prominent approaches to probability.

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis

Download Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461451043
Total Pages : 388 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis by : Uffe B. Kjærulff

Download or read book Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis written by Uffe B. Kjærulff and published by Springer Science & Business Media. This book was released on 2012-11-30 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.

Bayesian Networks

Download Bayesian Networks PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000410382
Total Pages : 275 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Networks by : Marco Scutari

Download or read book Bayesian Networks written by Marco Scutari and published by CRC Press. This book was released on 2021-07-28 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R

Modeling and Reasoning with Bayesian Networks

Download Modeling and Reasoning with Bayesian Networks PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521884381
Total Pages : 561 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Reasoning with Bayesian Networks by : Adnan Darwiche

Download or read book Modeling and Reasoning with Bayesian Networks written by Adnan Darwiche and published by Cambridge University Press. This book was released on 2009-04-06 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer.

Bayesian Networks

Download Bayesian Networks PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470994542
Total Pages : 446 pages
Book Rating : 4.9/5 (945 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Networks by : Olivier Pourret

Download or read book Bayesian Networks written by Olivier Pourret and published by John Wiley & Sons. This book was released on 2008-04-30 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.

Probabilistic Reasoning in Intelligent Systems

Download Probabilistic Reasoning in Intelligent Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080514898
Total Pages : 573 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Reasoning in Intelligent Systems by : Judea Pearl

Download or read book Probabilistic Reasoning in Intelligent Systems written by Judea Pearl and published by Elsevier. This book was released on 2014-06-28 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

Learning Bayesian Networks

Download Learning Bayesian Networks PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 :
Total Pages : 704 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Learning Bayesian Networks by : Richard E. Neapolitan

Download or read book Learning Bayesian Networks written by Richard E. Neapolitan and published by Prentice Hall. This book was released on 2004 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.

Advances in Probabilistic Graphical Models

Download Advances in Probabilistic Graphical Models PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540689966
Total Pages : 386 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Advances in Probabilistic Graphical Models by : Peter Lucas

Download or read book Advances in Probabilistic Graphical Models written by Peter Lucas and published by Springer. This book was released on 2007-06-12 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together important topics of current research in probabilistic graphical modeling, learning from data and probabilistic inference. Coverage includes such topics as the characterization of conditional independence, the learning of graphical models with latent variables, and extensions to the influence diagram formalism as well as important application fields, such as the control of vehicles, bioinformatics and medicine.

Risk Assessment and Decision Analysis with Bayesian Networks

Download Risk Assessment and Decision Analysis with Bayesian Networks PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351978977
Total Pages : 661 pages
Book Rating : 4.3/5 (519 download)

DOWNLOAD NOW!


Book Synopsis Risk Assessment and Decision Analysis with Bayesian Networks by : Norman Fenton

Download or read book Risk Assessment and Decision Analysis with Bayesian Networks written by Norman Fenton and published by CRC Press. This book was released on 2018-09-03 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book published, Bayesian networks have become even more important for applications in a vast array of fields. This second edition includes new material on influence diagrams, learning from data, value of information, cybersecurity, debunking bad statistics, and much more. Focusing on practical real-world problem-solving and model building, as opposed to algorithms and theory, it explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide more powerful insights and better decision making than is possible from purely data-driven solutions. Features Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, forensics, cybersecurity and more Introduces all necessary mathematics, probability, and statistics as needed Establishes the basics of probability, risk, and building and using Bayesian network models, before going into the detailed applications A dedicated website contains exercises and worked solutions for all chapters along with numerous other resources. The AgenaRisk software contains a model library with executable versions of all of the models in the book. Lecture slides are freely available to accredited academic teachers adopting the book on their course.

Learning in Graphical Models

Download Learning in Graphical Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401150141
Total Pages : 658 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Learning in Graphical Models by : M.I. Jordan

Download or read book Learning in Graphical Models written by M.I. Jordan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.

Bayesian Networks and Decision Graphs

Download Bayesian Networks and Decision Graphs PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387682821
Total Pages : 457 pages
Book Rating : 4.3/5 (876 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Networks and Decision Graphs by : Thomas Dyhre Nielsen

Download or read book Bayesian Networks and Decision Graphs written by Thomas Dyhre Nielsen and published by Springer Science & Business Media. This book was released on 2009-03-17 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a brand new edition of an essential work on Bayesian networks and decision graphs. It is an introduction to probabilistic graphical models including Bayesian networks and influence diagrams. The reader is guided through the two types of frameworks with examples and exercises, which also give instruction on how to build these models. Structured in two parts, the first section focuses on probabilistic graphical models, while the second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision process and partially ordered decision problems.

Risk Assessment and Decision Analysis with Bayesian Networks

Download Risk Assessment and Decision Analysis with Bayesian Networks PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439809100
Total Pages : 527 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Risk Assessment and Decision Analysis with Bayesian Networks by : Norman Fenton

Download or read book Risk Assessment and Decision Analysis with Bayesian Networks written by Norman Fenton and published by CRC Press. This book was released on 2012-11-07 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many Bayesian Network (BN) applications are now in everyday use, BNs have not yet achieved mainstream penetration. Focusing on practical real-world problem solving and model building, as opposed to algorithms and theory, Risk Assessment and Decision Analysis with Bayesian Networks explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide powerful insights and better decision making. Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, and more Introduces all necessary mathematics, probability, and statistics as needed The book first establishes the basics of probability, risk, and building and using BN models, then goes into the detailed applications. The underlying BN algorithms appear in appendices rather than the main text since there is no need to understand them to build and use BN models. Keeping the body of the text free of intimidating mathematics, the book provides pragmatic advice about model building to ensure models are built efficiently. A dedicated website, www.BayesianRisk.com, contains executable versions of all of the models described, exercises and worked solutions for all chapters, PowerPoint slides, numerous other resources, and a free downloadable copy of the AgenaRisk software.

Innovations in Bayesian Networks

Download Innovations in Bayesian Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354085066X
Total Pages : 324 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Innovations in Bayesian Networks by : Dawn E. Holmes

Download or read book Innovations in Bayesian Networks written by Dawn E. Holmes and published by Springer. This book was released on 2008-09-10 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained. Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Graduate students since it shows the direction of current research.

Probabilistic Graphical Models

Download Probabilistic Graphical Models PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262013193
Total Pages : 1268 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Graphical Models by : Daphne Koller

Download or read book Probabilistic Graphical Models written by Daphne Koller and published by MIT Press. This book was released on 2009-07-31 with total page 1268 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.