Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Expectation Maximization Algorithms For Conditional Likelihoods
Download Expectation Maximization Algorithms For Conditional Likelihoods full books in PDF, epub, and Kindle. Read online Expectation Maximization Algorithms For Conditional Likelihoods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Theory and Use of the EM Algorithm by : Maya R. Gupta
Download or read book Theory and Use of the EM Algorithm written by Maya R. Gupta and published by Now Publishers Inc. This book was released on 2011 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the expectation-maximization (EM) algorithm and provides an intuitive and mathematically rigorous understanding of this method. Theory and Use of the EM Algorithm is designed to be useful to both the EM novice and the experienced EM user looking to better understand the method and its use.
Book Synopsis Probability for Machine Learning by : Jason Brownlee
Download or read book Probability for Machine Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2019-09-24 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability is the bedrock of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in probability that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of probability to machine learning, Bayesian probability, entropy, density estimation, maximum likelihood, and much more.
Book Synopsis The EM Algorithm and Extensions by : Geoffrey J. McLachlan
Download or read book The EM Algorithm and Extensions written by Geoffrey J. McLachlan and published by John Wiley & Sons. This book was released on 2007-11-09 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented. While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include: New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm New results on convergence, including convergence of the EM algorithm in constrained parameter spaces Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.
Book Synopsis Handbook of Mathematical Methods in Imaging by : Otmar Scherzer
Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Book Synopsis Handbook of Latent Variable and Related Models by :
Download or read book Handbook of Latent Variable and Related Models written by and published by Elsevier. This book was released on 2011-08-11 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.
Book Synopsis Advanced Medical Statistics (2nd Edition) by : Ying Lu
Download or read book Advanced Medical Statistics (2nd Edition) written by Ying Lu and published by World Scientific. This book was released on 2015-06-29 with total page 1471 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book aims to provide both comprehensive reviews of the classical methods and an introduction to new developments in medical statistics. The topics range from meta analysis, clinical trial design, causal inference, personalized medicine to machine learning and next generation sequence analysis. Since the publication of the first edition, there have been tremendous advances in biostatistics and bioinformatics. The new edition tries to cover as many important emerging areas and reflect as much progress as possible. Many distinguished scholars, who greatly advanced their research areas in statistical methodology as well as practical applications, also have revised several chapters with relevant updates and written new ones from scratch.The new edition has been divided into four sections, including, Statistical Methods in Medicine and Epidemiology, Statistical Methods in Clinical Trials, Statistical Genetics, and General Methods. To reflect the rise of modern statistical genetics as one of the most fertile research areas since the publication of the first edition, the brand new section on Statistical Genetics includes entirely new chapters reflecting the state of the art in the field.Although tightly related, all the book chapters are self-contained and can be read independently. The book chapters intend to provide a convenient launch pad for readers interested in learning a specific topic, applying the related statistical methods in their scientific research and seeking the newest references for in-depth research.
Book Synopsis Multidimensional Item Response Theory by : M.D. Reckase
Download or read book Multidimensional Item Response Theory written by M.D. Reckase and published by Springer Science & Business Media. This book was released on 2009-07-07 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: First thorough treatment of multidimensional item response theory Description of methods is supported by numerous practical examples Describes procedures for multidimensional computerized adaptive testing
Book Synopsis Bayesian Reasoning and Machine Learning by : David Barber
Download or read book Bayesian Reasoning and Machine Learning written by David Barber and published by Cambridge University Press. This book was released on 2012-02-02 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.
Book Synopsis Finite Mixture Models by : Geoffrey McLachlan
Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Book Synopsis Learning in Graphical Models by : M.I. Jordan
Download or read book Learning in Graphical Models written by M.I. Jordan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.
Book Synopsis Cyclostationarity: Theory and Methods by : Fakher Chaari
Download or read book Cyclostationarity: Theory and Methods written by Fakher Chaari and published by Springer Science & Business Media. This book was released on 2014-01-16 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade the research in signal analysis was dominated by models that encompass nonstationarity as an important feature. This book presents the results of a workshop held in Grodek—Poland in February 2013 which was dedicated to the investigation of cyclostationary signals. Its main objective is to highlight the strong interactions between theory and applications of cyclostationary signals with the use of modern statistical tools. An important application of cyclostationary signals is the analysis of mechanical signals generated by a vibrating mechanism. Cyclostationary models are very important to perform basic operations on signals in both time and frequency domains. One of the fundamental problems in diagnosis of rotating machine is the identification of significant modulating frequencies that contribute to the cyclostationary nature of the signals. The book shows that there are modern tools available for analyzing cyclostationary signals without the assumption of gaussianity. Those methods are based on the ideas of bootstrap, subsampling and Fraction-of-time (FOT) models. The book is organised in two parts. The first part will be dedicated to pure theory on cyclostationarity. Applications are presented in the second part including several mechanical systems such as bearings, gears, with or without damages.
Book Synopsis Handbook of Item Response Theory by : Wim J. van der Linden
Download or read book Handbook of Item Response Theory written by Wim J. van der Linden and published by CRC Press. This book was released on 2017-03-31 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawing on the work of internationally acclaimed experts in the field, Handbook of Item Response Theory, Volume Two: Statistical Tools presents classical and modern statistical tools used in item response theory (IRT). While IRT heavily depends on the use of statistical tools for handling its models and applications, systematic introductions and reviews that emphasize their relevance to IRT are hardly found in the statistical literature. This second volume in a three-volume set fills this void. Volume Two covers common probability distributions, the issue of models with both intentional and nuisance parameters, the use of information criteria, methods for dealing with missing data, and model identification issues. It also addresses recent developments in parameter estimation and model fit and comparison, such as Bayesian approaches, specifically Markov chain Monte Carlo (MCMC) methods.
Book Synopsis Statistical Analysis with Missing Data by : Roderick J. A. Little
Download or read book Statistical Analysis with Missing Data written by Roderick J. A. Little and published by John Wiley & Sons. This book was released on 2019-03-21 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive treatment of a classic text on missing data in statistics The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. An updated “classic” written by renowned authorities on the subject Features over 150 exercises (including many new ones) Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods Revises previous topics based on past student feedback and class experience Contains an updated and expanded bibliography The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work "has been no less than defining and transforming." (ISI) Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.
Book Synopsis An Introduction to Conditional Random Fields by : Charles Sutton
Download or read book An Introduction to Conditional Random Fields written by Charles Sutton and published by Now Pub. This book was released on 2012 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge of graphical modeling, and so is intended to be useful to practitioners in a wide variety of fields.
Download or read book Machine Learning written by Tony Jebara and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning: Discriminative and Generative covers the main contemporary themes and tools in machine learning ranging from Bayesian probabilistic models to discriminative support-vector machines. However, unlike previous books that only discuss these rather different approaches in isolation, it bridges the two schools of thought together within a common framework, elegantly connecting their various theories and making one common big-picture. Also, this bridge brings forth new hybrid discriminative-generative tools that combine the strengths of both camps. This book serves multiple purposes as well. The framework acts as a scientific breakthrough, fusing the areas of generative and discriminative learning and will be of interest to many researchers. However, as a conceptual breakthrough, this common framework unifies many previously unrelated tools and techniques and makes them understandable to a larger portion of the public. This gives the more practical-minded engineer, student and the industrial public an easy-access and more sensible road map into the world of machine learning. Machine Learning: Discriminative and Generative is designed for an audience composed of researchers & practitioners in industry and academia. The book is also suitable as a secondary text for graduate-level students in computer science and engineering.
Book Synopsis Advances in Neural Information Processing Systems 11 by : Michael S. Kearns
Download or read book Advances in Neural Information Processing Systems 11 written by Michael S. Kearns and published by MIT Press. This book was released on 1999 with total page 1122 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Download or read book Mixtures written by Kerrie L. Mengersen and published by John Wiley & Sons. This book was released on 2011-05-03 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject. The applications are drawn from scientific discipline, including biostatistics, computer science, ecology and finance. This area of statistics is important to a range of disciplines, and its methodology attracts interest from researchers in the fields in which it can be applied.