Even Convexity and Optimization

Download Even Convexity and Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030534561
Total Pages : 192 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Even Convexity and Optimization by : María D. Fajardo

Download or read book Even Convexity and Optimization written by María D. Fajardo and published by Springer Nature. This book was released on 2020-10-27 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This tutorial is the first comprehensive introduction to (possibly infinite) linear systems containing strict inequalities and evenly convex sets. The book introduces their application to convex optimization. Particular attention is paid to evenly convex polyhedra and finite linear systems containing strict inequalities. The book also analyzes evenly convex and quasiconvex functions from a conjugacy and duality perspective. It discusses the applications of these functions in economics. Written in an expository style the main concepts and basic results are illustrated with suitable examples and figures..

Convex Optimization

Download Convex Optimization PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521833783
Total Pages : 744 pages
Book Rating : 4.8/5 (337 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization by : Stephen P. Boyd

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Convex Analysis and Nonlinear Optimization

Download Convex Analysis and Nonlinear Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387312560
Total Pages : 316 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Nonlinear Optimization by : Jonathan Borwein

Download or read book Convex Analysis and Nonlinear Optimization written by Jonathan Borwein and published by Springer Science & Business Media. This book was released on 2010-05-05 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.

Convex Analysis and Global Optimization

Download Convex Analysis and Global Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475728093
Total Pages : 346 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Global Optimization by : Hoang Tuy

Download or read book Convex Analysis and Global Optimization written by Hoang Tuy and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization.

Convex Analysis and Optimization

Download Convex Analysis and Optimization PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529450
Total Pages : 560 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Optimization by : Dimitri Bertsekas

Download or read book Convex Analysis and Optimization written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2003-03-01 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html

Convex Optimization Theory

Download Convex Optimization Theory PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529310
Total Pages : 256 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization Theory by : Dimitri Bertsekas

Download or read book Convex Optimization Theory written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2009-06-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).

Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization

Download Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401140669
Total Pages : 218 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization by : D. Butnariu

Download or read book Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization written by D. Butnariu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea surable families of operators and optimization methods in infinite dimen sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional Banach spaces was started in [33] where it was shown that they are useful tools for extrapolating properties commonly known to belong to operators satisfying demanding contractivity requirements to classes of operators which are not even mildly nonexpansive.

Convexity and Well-Posed Problems

Download Convexity and Well-Posed Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387310827
Total Pages : 308 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Convexity and Well-Posed Problems by : Roberto Lucchetti

Download or read book Convexity and Well-Posed Problems written by Roberto Lucchetti and published by Springer Science & Business Media. This book was released on 2006-02-02 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals mainly with the study of convex functions and their behavior from the point of view of stability with respect to perturbations. We shall consider convex functions from the most modern point of view: a function is de?ned to be convex whenever its epigraph, the set of the points lying above the graph, is a convex set. Thus many of its properties can be seen also as properties of a certain convex set related to it. Moreover, we shall consider extended real valued functions, i. e. , functions taking possibly the values?? and +?. The reason for considering the value +? is the powerful device of including the constraint set of a constrained minimum problem into the objective function itself (by rede?ning it as +? outside the constraint set). Except for trivial cases, the minimum value must be taken at a point where the function is not +?, hence at a point in the constraint set. And the value ?? is allowed because useful operations, such as the inf-convolution, can give rise to functions valued?? even when the primitive objects are real valued. Observe that de?ning the objective function to be +? outside the closed constraint set preserves lower semicontinuity, which is the pivotal and mi- mal continuity assumption one needs when dealing with minimum problems. Variational calculus is usually based on derivatives.

Algorithms for Convex Optimization

Download Algorithms for Convex Optimization PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108633994
Total Pages : 314 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Convex Optimization by : Nisheeth K. Vishnoi

Download or read book Algorithms for Convex Optimization written by Nisheeth K. Vishnoi and published by Cambridge University Press. This book was released on 2021-10-07 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.

Convex Optimization & Euclidean Distance Geometry

Download Convex Optimization & Euclidean Distance Geometry PDF Online Free

Author :
Publisher : Meboo Publishing USA
ISBN 13 : 0976401304
Total Pages : 776 pages
Book Rating : 4.9/5 (764 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization & Euclidean Distance Geometry by : Jon Dattorro

Download or read book Convex Optimization & Euclidean Distance Geometry written by Jon Dattorro and published by Meboo Publishing USA. This book was released on 2005 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.

Lectures on Modern Convex Optimization

Download Lectures on Modern Convex Optimization PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898714915
Total Pages : 500 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Modern Convex Optimization by : Aharon Ben-Tal

Download or read book Lectures on Modern Convex Optimization written by Aharon Ben-Tal and published by SIAM. This book was released on 2001-01-01 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Convex Analysis and Variational Problems

Download Convex Analysis and Variational Problems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611971088
Total Pages : 414 pages
Book Rating : 4.9/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Variational Problems by : Ivar Ekeland

Download or read book Convex Analysis and Variational Problems written by Ivar Ekeland and published by SIAM. This book was released on 1999-12-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.

Semidefinite Optimization and Convex Algebraic Geometry

Download Semidefinite Optimization and Convex Algebraic Geometry PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611972280
Total Pages : 487 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Semidefinite Optimization and Convex Algebraic Geometry by : Grigoriy Blekherman

Download or read book Semidefinite Optimization and Convex Algebraic Geometry written by Grigoriy Blekherman and published by SIAM. This book was released on 2013-03-21 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.

First-order and Stochastic Optimization Methods for Machine Learning

Download First-order and Stochastic Optimization Methods for Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030395685
Total Pages : 591 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis First-order and Stochastic Optimization Methods for Machine Learning by : Guanghui Lan

Download or read book First-order and Stochastic Optimization Methods for Machine Learning written by Guanghui Lan and published by Springer Nature. This book was released on 2020-05-15 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

First-Order Methods in Optimization

Download First-Order Methods in Optimization PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974984
Total Pages : 476 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis First-Order Methods in Optimization by : Amir Beck

Download or read book First-Order Methods in Optimization written by Amir Beck and published by SIAM. This book was released on 2017-10-02 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.

Convex Sets and Their Applications

Download Convex Sets and Their Applications PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486458032
Total Pages : 260 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Convex Sets and Their Applications by : Steven R. Lay

Download or read book Convex Sets and Their Applications written by Steven R. Lay and published by Courier Corporation. This book was released on 2007-01-01 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduates and graduate students, this text introduces the broad scope of convexity. It leads students to open questions and unsolved problems, and it highlights diverse applications. Author Steven R. Lay, Professor of Mathematics at Lee University in Tennessee, reinforces his teachings with numerous examples, plus exercises with hints and answers. The first three chapters form the foundation for all that follows, starting with a review of the fundamentals of linear algebra and topology. They also survey the development and applications of relationships between hyperplanes and convex sets. Subsequent chapters are relatively self-contained, each focusing on a particular aspect or application of convex sets. Topics include characterizations of convex sets, polytopes, duality, optimization, and convex functions. Hints, solutions, and references for the exercises appear at the back of the book.

Convex Analysis

Download Convex Analysis PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400873177
Total Pages : 470 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis by : Ralph Tyrell Rockafellar

Download or read book Convex Analysis written by Ralph Tyrell Rockafellar and published by Princeton University Press. This book was released on 2015-04-29 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.