Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Erdos Space And Homeomorphism Groups Of Manifolds
Download Erdos Space And Homeomorphism Groups Of Manifolds full books in PDF, epub, and Kindle. Read online Erdos Space And Homeomorphism Groups Of Manifolds ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Erdos Space and Homeomorphism Groups of Manifolds by : Jan Jakobus Dijkstra
Download or read book Erdos Space and Homeomorphism Groups of Manifolds written by Jan Jakobus Dijkstra and published by American Mathematical Soc.. This book was released on 2010 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let M be either a topological manifold, a Hilbert cube manifold, or a Menger manifold and let D be an arbitrary countable dense subset of M. Consider the topological group H(M,D) which consists of all autohomeomorphisms of M that map D onto itself equipped with the compact-open topology. We present a complete solution to the topological classification problem for H(M,D) as follows. If M is a one-dimensional topological manifold, then we proved in an earlier paper that H(M,D) is homeomorphic to Qω, the countable power of the space of rational numbers. In all other cases we find in this paper that H(M,D) is homeomorphic to the famed Erdős space E E, which consists of the vectors in Hilbert space l2 with rational coordinates. We obtain the second result by developing topological characterizations of Erdős space.
Book Synopsis Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates by : Steve Hofmann
Download or read book Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates written by Steve Hofmann and published by American Mathematical Soc.. This book was released on 2011 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $X$ be a metric space with doubling measure, and $L$ be a non-negative, self-adjoint operator satisfying Davies-Gaffney bounds on $L^2(X)$. In this article the authors present a theory of Hardy and BMO spaces associated to $L$, including an atomic (or molecular) decomposition, square function characterization, and duality of Hardy and BMO spaces. Further specializing to the case that $L$ is a Schrodinger operator on $\mathbb{R}^n$ with a non-negative, locally integrable potential, the authors establish additional characterizations of such Hardy spaces in terms of maximal functions. Finally, they define Hardy spaces $H^p_L(X)$ for $p>1$, which may or may not coincide with the space $L^p(X)$, and show that they interpolate with $H^1_L(X)$ spaces by the complex method.
Book Synopsis Differential Forms on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems by : Wilfrid Gangbo
Download or read book Differential Forms on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems written by Wilfrid Gangbo and published by American Mathematical Soc.. This book was released on 2010 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $\mathcal{M}$ denote the space of probability measures on $\mathbb{R}^D$ endowed with the Wasserstein metric. A differential calculus for a certain class of absolutely continuous curves in $\mathcal{M}$ was introduced by Ambrosio, Gigli, and Savare. In this paper the authors develop a calculus for the corresponding class of differential forms on $\mathcal{M}$. In particular they prove an analogue of Green's theorem for 1-forms and show that the corresponding first cohomology group, in the sense of de Rham, vanishes. For $D=2d$ the authors then define a symplectic distribution on $\mathcal{M}$ in terms of this calculus, thus obtaining a rigorous framework for the notion of Hamiltonian systems as introduced by Ambrosio and Gangbo. Throughout the paper the authors emphasize the geometric viewpoint and the role played by certain diffeomorphism groups of $\mathbb{R}^D$.
Book Synopsis Recent Progress in General Topology III by : K.P. Hart
Download or read book Recent Progress in General Topology III written by K.P. Hart and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 898 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents surveys describing recent developments in most of the primary subfields of General Topology, and its applications to Algebra and Analysis during the last decade, following the previous editions (North Holland, 1992 and 2002). The book was prepared in connection with the Prague Topological Symposium, held in 2011. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs from that chosen in 2002. The following areas experienced significant developments: Fractals, Coarse Geometry/Topology, Dimension Theory, Set Theoretic Topology and Dynamical Systems.
Book Synopsis Axes in Outer Space by : Michael Handel
Download or read book Axes in Outer Space written by Michael Handel and published by American Mathematical Soc.. This book was released on 2011 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: "September 2011, volume 213, number 1004 (end of volume)."
Book Synopsis The Moduli Space of Cubic Threefolds as a Ball Quotient by : Daniel Allcock
Download or read book The Moduli Space of Cubic Threefolds as a Ball Quotient written by Daniel Allcock and published by American Mathematical Soc.. This book was released on 2011 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Volume 209, number 985 (fourth of 5 numbers)."
Book Synopsis The Internally 4-Connected Binary Matroids with No $M(K_{3,3})$-Minor by : Dillon Mayhew
Download or read book The Internally 4-Connected Binary Matroids with No $M(K_{3,3})$-Minor written by Dillon Mayhew and published by American Mathematical Soc.. This book was released on 2010 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors give a characterization of the internally $4$-connected binary matroids that have no minor isomorphic to $M(K_{3,3})$. Any such matroid is either cographic, or is isomorphic to a particular single-element extension of the bond matroid of a cubic or quartic Mobius ladder, or is isomorphic to one of eighteen sporadic matroids.
Book Synopsis Affine Insertion and Pieri Rules for the Affine Grassmannian by : Thomas Lam
Download or read book Affine Insertion and Pieri Rules for the Affine Grassmannian written by Thomas Lam and published by American Mathematical Soc.. This book was released on 2010 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study combinatorial aspects of the Schubert calculus of the affine Grassmannian ${\rm Gr}$ associated with $SL(n,\mathbb{C})$.Their main results are: Pieri rules for the Schubert bases of $H^*({\rm Gr})$ and $H_*({\rm Gr})$, which expresses the product of a special Schubert class and an arbitrary Schubert class in terms of Schubert classes. A new combinatorial definition for $k$-Schur functions, which represent the Schubert basis of $H_*({\rm Gr})$. A combinatorial interpretation of the pairing $H^*({\rm Gr})\times H_*({\rm Gr}) \rightarrow\mathbb Z$ induced by the cap product.
Book Synopsis Classification of Radial Solutions Arising in the Study of Thermal Structures with Thermal Equilibrium or No Flux at the Boundary by : Alfonso Castro
Download or read book Classification of Radial Solutions Arising in the Study of Thermal Structures with Thermal Equilibrium or No Flux at the Boundary written by Alfonso Castro and published by American Mathematical Soc.. This book was released on 2010 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors provide a complete classification of the radial solutions to a class of reaction diffusion equations arising in the study of thermal structures such as plasmas with thermal equilibrium or no flux at the boundary. In particular, their study includes rapidly growing nonlinearities, that is, those where an exponent exceeds the critical exponent. They describe the corresponding bifurcation diagrams and determine existence and uniqueness of ground states, which play a central role in characterizing those diagrams. They also provide information on the stability-unstability of the radial steady states.
Book Synopsis Iwasawa Theory, Projective Modules, and Modular Representations by : Ralph Greenberg
Download or read book Iwasawa Theory, Projective Modules, and Modular Representations written by Ralph Greenberg and published by American Mathematical Soc.. This book was released on 2010 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper shows that properties of projective modules over a group ring $\mathbf{Z}_p[\Delta]$, where $\Delta$ is a finite Galois group, can be used to study the behavior of certain invariants which occur naturally in Iwasawa theory for an elliptic curve $E$. Modular representation theory for the group $\Delta$ plays a crucial role in this study. It is necessary to make a certain assumption about the vanishing of a $\mu$-invariant. The author then studies $\lambda$-invariants $\lambda_E(\sigma)$, where $\sigma$ varies over the absolutely irreducible representations of $\Delta$. He shows that there are non-trivial relationships between these invariants under certain hypotheses.
Book Synopsis Rearranging Dyson-Schwinger Equations by : Karen Yeats
Download or read book Rearranging Dyson-Schwinger Equations written by Karen Yeats and published by American Mathematical Soc.. This book was released on 2011 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dyson-Schwinger equations are integral equations in quantum field theory that describe the Green functions of a theory and mirror the recursive decomposition of Feynman diagrams into subdiagrams. Taken as recursive equations, the Dyson-Schwinger equations describe perturbative quantum field theory. However, they also contain non-perturbative information. Using the Hopf algebra of Feynman graphs the author follows a sequence of reductions to convert the Dyson-Schwinger equations to a new system of differential equations.
Book Synopsis $Q$-Valued Functions Revisited by : Camillo De Lellis
Download or read book $Q$-Valued Functions Revisited written by Camillo De Lellis and published by American Mathematical Soc.. This book was released on 2011 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this memoir the authors revisit Almgren's theory of $Q$-valued functions, which are functions taking values in the space $\mathcal{A}_Q(\mathbb{R}^{n})$ of unordered $Q$-tuples of points in $\mathbb{R}^{n}$. In particular, the authors: give shorter versions of Almgren's proofs of the existence of $\mathrm{Dir}$-minimizing $Q$-valued functions, of their Holder regularity, and of the dimension estimate of their singular set; propose an alternative, intrinsic approach to these results, not relying on Almgren's biLipschitz embedding $\xi: \mathcal{A}_Q(\mathbb{R}^{n})\to\mathbb{R}^{N(Q,n)}$; improve upon the estimate of the singular set of planar $\mathrm{D}$-minimizing functions by showing that it consists of isolated points.
Book Synopsis Jumping Numbers of a Simple Complete Ideal in a Two-Dimensional Regular Local Ring by : Tarmo Järvilehto
Download or read book Jumping Numbers of a Simple Complete Ideal in a Two-Dimensional Regular Local Ring written by Tarmo Järvilehto and published by American Mathematical Soc.. This book was released on 2011 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: The multiplier ideals of an ideal in a regular local ring form a family of ideals parameterized by non-negative rational numbers. As the rational number increases the corresponding multiplier ideal remains unchanged until at some point it gets strictly smaller. A rational number where this kind of diminishing occurs is called a jumping number of the ideal. In this manuscript the author gives an explicit formula for the jumping numbers of a simple complete ideal in a two-dimensional regular local ring. In particular, he obtains a formula for the jumping numbers of an analytically irreducible plane curve. He then shows that the jumping numbers determine the equisingularity class of the curve.
Book Synopsis Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees by : Lee Mosher
Download or read book Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees written by Lee Mosher and published by American Mathematical Soc.. This book was released on 2011 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if $\mathcal{G}$ is a finite graph of coarse Poincare duality groups, then any finitely generated group quasi-isometric to the fundamental group of $\mathcal{G}$ is also the fundamental group of a finite graph of coarse Poincare duality groups, and any quasi-isometry between two such groups must coarsely preserve the vertex and edge spaces of their Bass-Serre trees of spaces. Besides some simple normalization hypotheses, the main hypothesis is the ``crossing graph condition'', which is imposed on each vertex group $\mathcal{G}_v$ which is an $n$-dimensional coarse Poincare duality group for which every incident edge group has positive codimension: the crossing graph of $\mathcal{G}_v$ is a graph $\epsilon_v$ that describes the pattern in which the codimension 1 edge groups incident to $\mathcal{G}_v$ are crossed by other edge groups incident to $\mathcal{G}_v$, and the crossing graph condition requires that $\epsilon_v$ be connected or empty.
Book Synopsis On the Algebraic Foundations of Bounded Cohomology by : Theo Bühler
Download or read book On the Algebraic Foundations of Bounded Cohomology written by Theo Bühler and published by American Mathematical Soc.. This book was released on 2011 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is a widespread opinion among experts that (continuous) bounded cohomology cannot be interpreted as a derived functor and that triangulated methods break down. The author proves that this is wrong. He uses the formalism of exact categories and their derived categories in order to construct a classical derived functor on the category of Banach $G$-modules with values in Waelbroeck's abelian category. This gives us an axiomatic characterization of this theory for free, and it is a simple matter to reconstruct the classical semi-normed cohomology spaces out of Waelbroeck's category. The author proves that the derived categories of right bounded and of left bounded complexes of Banach $G$-modules are equivalent to the derived category of two abelian categories (one for each boundedness condition), a consequence of the theory of abstract truncation and hearts of $t$-structures. Moreover, he proves that the derived categories of Banach $G$-modules can be constructed as the homotopy categories of model structures on the categories of chain complexes of Banach $G$-modules, thus proving that the theory fits into yet another standard framework of homological and homotopical algebra.
Book Synopsis Parabolic Systems with Polynomial Growth and Regularity by : Frank Duzaar
Download or read book Parabolic Systems with Polynomial Growth and Regularity written by Frank Duzaar and published by American Mathematical Soc.. This book was released on 2011 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors establish a series of optimal regularity results for solutions to general non-linear parabolic systems $ u_t- \mathrm{div} \ a(x,t,u,Du)+H=0,$ under the main assumption of polynomial growth at rate $p$ i.e. $ a(x,t,u,Du) \leq L(1+ Du ^{p-1}), p \geq 2.$ They give a unified treatment of various interconnected aspects of the regularity theory: optimal partial regularity results for the spatial gradient of solutions, the first estimates on the (parabolic) Hausdorff dimension of the related singular set, and the first Calderon-Zygmund estimates for non-homogeneous problems are achieved here.
Book Synopsis On First and Second Order Planar Elliptic Equations with Degeneracies by : Abdelhamid Meziani
Download or read book On First and Second Order Planar Elliptic Equations with Degeneracies written by Abdelhamid Meziani and published by American Mathematical Soc.. This book was released on 2012 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper deals with elliptic equations in the plane with degeneracies. The equations are generated by a complex vector field that is elliptic everywhere except along a simple closed curve. Kernels for these equations are constructed. Properties of solutions, in a neighborhood of the degeneracy curve, are obtained through integral and series representations. An application to a second order elliptic equation with a punctual singularity is given.