Efficient Processing of Deep Neural Networks

Download Efficient Processing of Deep Neural Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031017668
Total Pages : 254 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Efficient Processing of Deep Neural Networks by : Vivienne Sze

Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design

Download Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119507391
Total Pages : 300 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design by : Nan Zheng

Download or read book Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design written by Nan Zheng and published by John Wiley & Sons. This book was released on 2019-10-18 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks. The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware. Includes cross-layer survey of hardware accelerators for neuromorphic algorithms Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities.

Hardware Accelerator Systems for Artificial Intelligence and Machine Learning

Download Hardware Accelerator Systems for Artificial Intelligence and Machine Learning PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128231238
Total Pages : 414 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Hardware Accelerator Systems for Artificial Intelligence and Machine Learning by : Shiho Kim

Download or read book Hardware Accelerator Systems for Artificial Intelligence and Machine Learning written by Shiho Kim and published by Elsevier. This book was released on 2021-04-07 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Volume 122 delves into arti?cial Intelligence and the growth it has seen with the advent of Deep Neural Networks (DNNs) and Machine Learning. Updates in this release include chapters on Hardware accelerator systems for artificial intelligence and machine learning, Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Deep Learning with GPUs, Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures, Architecture of NPU for DNN, Hardware Architecture for Convolutional Neural Network for Image Processing, FPGA based Neural Network Accelerators, and much more. Updates on new information on the architecture of GPU, NPU and DNN Discusses In-memory computing, Machine intelligence and Quantum computing Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance

Compact and Fast Machine Learning Accelerator for IoT Devices

Download Compact and Fast Machine Learning Accelerator for IoT Devices PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811333238
Total Pages : 157 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Compact and Fast Machine Learning Accelerator for IoT Devices by : Hantao Huang

Download or read book Compact and Fast Machine Learning Accelerator for IoT Devices written by Hantao Huang and published by Springer. This book was released on 2018-12-07 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.

Machine Learning

Download Machine Learning PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1789237521
Total Pages : 231 pages
Book Rating : 4.7/5 (892 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning by : Hamed Farhadi

Download or read book Machine Learning written by Hamed Farhadi and published by BoD – Books on Demand. This book was released on 2018-09-19 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume of data that is generated, stored, and communicated across different industrial sections, business units, and scientific research communities has been rapidly expanding. The recent developments in cellular telecommunications and distributed/parallel computation technology have enabled real-time collection and processing of the generated data across different sections. On the one hand, the internet of things (IoT) enabled by cellular telecommunication industry connects various types of sensors that can collect heterogeneous data. On the other hand, the recent advances in computational capabilities such as parallel processing in graphical processing units (GPUs) and distributed processing over cloud computing clusters enabled the processing of a vast amount of data. There has been a vital need to discover important patterns and infer trends from a large volume of data (so-called Big Data) to empower data-driven decision-making processes. Tools and techniques have been developed in machine learning to draw insightful conclusions from available data in a structured and automated fashion. Machine learning algorithms are based on concepts and tools developed in several fields including statistics, artificial intelligence, information theory, cognitive science, and control theory. The recent advances in machine learning have had a broad range of applications in different scientific disciplines. This book covers recent advances of machine learning techniques in a broad range of applications in smart cities, automated industry, and emerging businesses.

VLSI and Hardware Implementations using Modern Machine Learning Methods

Download VLSI and Hardware Implementations using Modern Machine Learning Methods PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000523845
Total Pages : 292 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis VLSI and Hardware Implementations using Modern Machine Learning Methods by : Sandeep Saini

Download or read book VLSI and Hardware Implementations using Modern Machine Learning Methods written by Sandeep Saini and published by CRC Press. This book was released on 2021-12-31 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Features: Provides the details of state-of-the-art machine learning methods used in VLSI design Discusses hardware implementation and device modeling pertaining to machine learning algorithms Explores machine learning for various VLSI architectures and reconfigurable computing Illustrates the latest techniques for device size and feature optimization Highlights the latest case studies and reviews of the methods used for hardware implementation This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.

Hardware Accelerator Systems for Artificial Intelligence and Machine Learning

Download Hardware Accelerator Systems for Artificial Intelligence and Machine Learning PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128231246
Total Pages : 416 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Hardware Accelerator Systems for Artificial Intelligence and Machine Learning by :

Download or read book Hardware Accelerator Systems for Artificial Intelligence and Machine Learning written by and published by Academic Press. This book was released on 2021-03-28 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Volume 122 delves into arti?cial Intelligence and the growth it has seen with the advent of Deep Neural Networks (DNNs) and Machine Learning. Updates in this release include chapters on Hardware accelerator systems for artificial intelligence and machine learning, Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Deep Learning with GPUs, Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures, Architecture of NPU for DNN, Hardware Architecture for Convolutional Neural Network for Image Processing, FPGA based Neural Network Accelerators, and much more. - Updates on new information on the architecture of GPU, NPU and DNN - Discusses In-memory computing, Machine intelligence and Quantum computing - Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance

TinyML

Download TinyML PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492052019
Total Pages : 504 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis TinyML by : Pete Warden

Download or read book TinyML written by Pete Warden and published by O'Reilly Media. This book was released on 2019-12-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Artificial Intelligence and Hardware Accelerators

Download Artificial Intelligence and Hardware Accelerators PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031221702
Total Pages : 358 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence and Hardware Accelerators by : Ashutosh Mishra

Download or read book Artificial Intelligence and Hardware Accelerators written by Ashutosh Mishra and published by Springer Nature. This book was released on 2023-03-15 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores new methods, architectures, tools, and algorithms for Artificial Intelligence Hardware Accelerators. The authors have structured the material to simplify readers’ journey toward understanding the aspects of designing hardware accelerators, complex AI algorithms, and their computational requirements, along with the multifaceted applications. Coverage focuses broadly on the hardware aspects of training, inference, mobile devices, and autonomous vehicles (AVs) based AI accelerators

Multimedia Signals and Systems

Download Multimedia Signals and Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461502659
Total Pages : 383 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Multimedia Signals and Systems by : Mrinal Kr. Mandal

Download or read book Multimedia Signals and Systems written by Mrinal Kr. Mandal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multimedia Signals and Systems is primarily a technical introductory level multimedia textbook, including problems, examples, and MATLAB® codes. It will be a stepping-stone for readers who want to research in audio processing, image and video processing, and data compression. This book will also be useful to readers who are carrying out research and development in systems areas such as television engineering and storage media. Anyone who seeks to learn the core multimedia signal processing techniques and systems will need Multimedia Signals and Systems. There are many chapters that are generic in nature and provide key concepts of multimedia systems to technical as well as non-technical persons. There are also several chapters that provide a mathematical/ analytical framework for basic multimedia signal processing. The readers are expected to have some prior knowledge about discrete signals and systems, such as Fourier transform and digital filters. However, a brief review of these theories is provided. Additional material for this book, including several MATLAB® codes along with a few test data samples; e.g., audio, image and video may be downloaded from http://extras.springer.com.

Deep Learning for Computer Architects

Download Deep Learning for Computer Architects PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031017560
Total Pages : 109 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Computer Architects by : Brandon Reagen

Download or read book Deep Learning for Computer Architects written by Brandon Reagen and published by Springer Nature. This book was released on 2022-05-31 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.

Efficient AI Solutions: Deploying Deep Learning with ONNX and CUDA

Download Efficient AI Solutions: Deploying Deep Learning with ONNX and CUDA PDF Online Free

Author :
Publisher : Walzone Press
ISBN 13 :
Total Pages : 217 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Efficient AI Solutions: Deploying Deep Learning with ONNX and CUDA by : Peter Jones

Download or read book Efficient AI Solutions: Deploying Deep Learning with ONNX and CUDA written by Peter Jones and published by Walzone Press. This book was released on 2024-10-15 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the full potential of deep learning with "Efficient AI Solutions: Deploying Deep Learning with ONNX and CUDA", your comprehensive guide to deploying high-performance AI models across diverse environments. This expertly crafted book navigates the intricate landscape of deep learning deployment, offering in-depth coverage of the pivotal technologies ONNX and CUDA. From optimizing and preparing models for deployment to leveraging accelerated computing for real-time inference, this book equips you with the essential knowledge to bring your deep learning projects to life. Dive into the nuances of model interoperability with ONNX, understand the architecture of CUDA for parallel computing, and explore advanced optimization techniques to enhance model performance. Whether you're deploying to the cloud, edge devices, or mobile platforms, "Efficient AI Solutions: Deploying Deep Learning with ONNX and CUDA" provides strategic insights into cross-platform deployment, ensuring your models achieve broad accessibility and optimal performance. Designed for data scientists, machine learning engineers, and software developers, this resource assumes a foundational understanding of deep learning, guiding readers through a seamless transition from training to production. Troubleshoot with ease and adopt best practices to stay ahead of deployment challenges. Prepare for the future of deep learning deployment with a closer look at emerging trends and technologies shaping the field. Embrace the future of AI with "Efficient AI Solutions: Deploying Deep Learning with ONNX and CUDA" — your pathway to deploying efficient, scalable, and robust deep learning models.

Handbook of Evolutionary Machine Learning

Download Handbook of Evolutionary Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819938147
Total Pages : 764 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Evolutionary Machine Learning by : Wolfgang Banzhaf

Download or read book Handbook of Evolutionary Machine Learning written by Wolfgang Banzhaf and published by Springer Nature. This book was released on 2023-11-01 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, written by leading international researchers of evolutionary approaches to machine learning, explores various ways evolution can address machine learning problems and improve current methods of machine learning. Topics in this book are organized into five parts. The first part introduces some fundamental concepts and overviews of evolutionary approaches to the three different classes of learning employed in machine learning. The second addresses the use of evolutionary computation as a machine learning technique describing methodologic improvements for evolutionary clustering, classification, regression, and ensemble learning. The third part explores the connection between evolution and neural networks, in particular the connection to deep learning, generative and adversarial models as well as the exciting potential of evolution with large language models. The fourth part focuses on the use of evolutionary computation for supporting machine learning methods. This includes methodological developments for evolutionary data preparation, model parametrization, design, and validation. The final part covers several chapters on applications in medicine, robotics, science, finance, and other disciplines. Readers find reviews of application areas and can discover large-scale, real-world applications of evolutionary machine learning to a variety of problem domains. This book will serve as an essential reference for researchers, postgraduate students, practitioners in industry and all those interested in evolutionary approaches to machine learning.

Artificial Intelligence Hardware Design

Download Artificial Intelligence Hardware Design PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119810477
Total Pages : 244 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence Hardware Design by : Albert Chun-Chen Liu

Download or read book Artificial Intelligence Hardware Design written by Albert Chun-Chen Liu and published by John Wiley & Sons. This book was released on 2021-08-23 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: ARTIFICIAL INTELLIGENCE HARDWARE DESIGN Learn foundational and advanced topics in Neural Processing Unit design with real-world examples from leading voices in the field In Artificial Intelligence Hardware Design: Challenges and Solutions, distinguished researchers and authors Drs. Albert Chun Chen Liu and Oscar Ming Kin Law deliver a rigorous and practical treatment of the design applications of specific circuits and systems for accelerating neural network processing. Beginning with a discussion and explanation of neural networks and their developmental history, the book goes on to describe parallel architectures, streaming graphs for massive parallel computation, and convolution optimization. The authors offer readers an illustration of in-memory computation through Georgia Tech’s Neurocube and Stanford’s Tetris accelerator using the Hybrid Memory Cube, as well as near-memory architecture through the embedded eDRAM of the Institute of Computing Technology, the Chinese Academy of Science, and other institutions. Readers will also find a discussion of 3D neural processing techniques to support multiple layer neural networks, as well as information like: A thorough introduction to neural networks and neural network development history, as well as Convolutional Neural Network (CNN) models Explorations of various parallel architectures, including the Intel CPU, Nvidia GPU, Google TPU, and Microsoft NPU, emphasizing hardware and software integration for performance improvement Discussions of streaming graph for massive parallel computation with the Blaize GSP and Graphcore IPU An examination of how to optimize convolution with UCLA Deep Convolutional Neural Network accelerator filter decomposition Perfect for hardware and software engineers and firmware developers, Artificial Intelligence Hardware Design is an indispensable resource for anyone working with Neural Processing Units in either a hardware or software capacity.

Smart Systems Design, Applications, and Challenges

Download Smart Systems Design, Applications, and Challenges PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1799821145
Total Pages : 459 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Smart Systems Design, Applications, and Challenges by : Rodrigues, João M.F.

Download or read book Smart Systems Design, Applications, and Challenges written by Rodrigues, João M.F. and published by IGI Global. This book was released on 2020-02-28 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smart systems when connected to artificial intelligence (AI) are still closely associated with some popular misconceptions that cause the general public to either have unrealistic fears about AI or to expect too much about how it will change our workplace and life in general. It is important to show that such fears are unfounded, and that new trends, technologies, and smart systems will be able to improve the way we live, benefiting society without replacing humans in their core activities. Smart Systems Design, Applications, and Challenges provides emerging research that presents state-of-the-art technologies and available systems in the domains of smart systems and AI and explains solutions from an augmented intelligence perspective, showing that these technologies can be used to benefit, instead of replace, humans by augmenting the information and actions of their daily lives. The book addresses all smart systems that incorporate functions of sensing, actuation, and control in order to describe and analyze a situation and make decisions based on the available data in a predictive or adaptive manner. Highlighting a broad range of topics such as business intelligence, cloud computing, and autonomous vehicles, this book is ideally designed for engineers, investigators, IT professionals, researchers, developers, data analysts, professors, and students.

Deep Learning-Powered Technologies

Download Deep Learning-Powered Technologies PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303135737X
Total Pages : 216 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning-Powered Technologies by : Khaled Salah Mohamed

Download or read book Deep Learning-Powered Technologies written by Khaled Salah Mohamed and published by Springer Nature. This book was released on 2023-06-23 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers various, leading-edge deep learning technologies. The author discusses new applications of deep learning and gives insight into the integration of deep learning with various application domains, such as autonomous driving, augmented reality, AIOT, 5G and beyond.

Embedded Deep Learning

Download Embedded Deep Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319992236
Total Pages : 216 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Embedded Deep Learning by : Bert Moons

Download or read book Embedded Deep Learning written by Bert Moons and published by Springer. This book was released on 2018-10-23 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.