Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Effects Of Grain Boundary Structure In Discrete Simulations Of Multiscale Dislocation Dynamics
Download Effects Of Grain Boundary Structure In Discrete Simulations Of Multiscale Dislocation Dynamics full books in PDF, epub, and Kindle. Read online Effects Of Grain Boundary Structure In Discrete Simulations Of Multiscale Dislocation Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Crystal Plasticity Finite Element Methods by : Franz Roters
Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Book Synopsis Size Effects in Plasticity by : George Voyiadjis
Download or read book Size Effects in Plasticity written by George Voyiadjis and published by Academic Press. This book was released on 2019-08-01 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Size Effects in Plasticity: From Macro to Nano provides concise explanations of all available methods in this area, from atomistic simulation, to non-local continuum models to capture size effects. It then compares their applicability to a wide range of research scenarios. This essential guide addresses basic principles, numerical issues and computation, applications and provides code which readers can use in their own modeling projects. Researchers in the fields of computational mechanics, materials science and engineering will find this to be an ideal resource when they address the size effects observed in deformation mechanisms and strengths of various materials. - Provides a comprehensive reference on the field of size effects and a review of mechanics of materials research in all scales - Explains all major methods of size effects simulation, including non-local continuum models, non-local crystal plasticity, discrete dislocation methods and molecular dynamics - Includes source codes that readers can use in their own projects
Book Synopsis Generalized Continua and Dislocation Theory by : Carlo Sansour
Download or read book Generalized Continua and Dislocation Theory written by Carlo Sansour and published by Springer Science & Business Media. This book was released on 2012-05-27 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects, dislocations and the general theory.- Approaches to generalized continua.- Generalized continuum modelling of crystal plasticity.- Introduction to discrete dislocation dynamics. The book contains four lectures on generalized continua and dislocation theory, reflecting the treatment of the subject at different scales. G. Maugin provides a continuum formulation of defects at the heart of which lies the notion of the material configuration and the material driving forces of in-homogeneities such as dislocations, disclinations, point defects, cracks, phase-transition fronts and shock waves. C. Sansour and S. Skatulla start with a compact treatment of linear transformation groups with subsequent excursion into the continuum theory of generalized continua. After a critical assessment a unified framework of the same is presented. The next contribution by S. Forest gives an account on generalized crystal plasticity. Finally, H. Zbib provides an account of dislocation dynamics and illustrates its fundamental importance at the smallest scale. In three contributions extensive computational results of many examples are presented.
Book Synopsis Mechanical Behavior of Advanced Materials: Modeling and Simulation by : Qihong Fang
Download or read book Mechanical Behavior of Advanced Materials: Modeling and Simulation written by Qihong Fang and published by CRC Press. This book was released on 2023-11-30 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the recent developments in the field of advanced materials, there exists a need for a systematic summary and detailed introduction of the modeling and simulation methods for these materials. This book provides a comprehensive description of the mechanical behavior of advanced materials using modeling and simulation. It includes materials such as high-entropy alloys, high-entropy amorphous alloys, nickel-based superalloys, light alloys, electrode materials, and nanostructured reinforced composites. Reviews the performance and application of a variety of advanced materials and provides the detailed theoretical modeling and simulation of mechanical properties Covers the topics of deformation, fracture, diffusion, and fatigue Features worked examples and exercises that help readers test their understanding This book is aimed at researchers and advanced students in solid mechanics, material science, engineering, material chemistry, and those studying the mechanics of materials.
Book Synopsis Dislocation Mechanism-Based Crystal Plasticity by : Zhuo Zhuang
Download or read book Dislocation Mechanism-Based Crystal Plasticity written by Zhuo Zhuang and published by Academic Press. This book was released on 2019-04-12 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. - Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale - Presents crystal plasticity theory without size effect - Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) - Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale
Author :Steven M. Arnold and Terry T. Wong, Editors Publisher :ASM International ISBN 13 :1615038434 Total Pages :206 pages Book Rating :4.6/5 (15 download)
Book Synopsis Models, Databases and Simulation Tools Needed for Realization of Integrated Computational Mat. Eng. (ICME 2010) by : Steven M. Arnold and Terry T. Wong, Editors
Download or read book Models, Databases and Simulation Tools Needed for Realization of Integrated Computational Mat. Eng. (ICME 2010) written by Steven M. Arnold and Terry T. Wong, Editors and published by ASM International. This book was released on 2011 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Multiscale Materials Modelling by : Z. X. Guo
Download or read book Multiscale Materials Modelling written by Z. X. Guo and published by Elsevier. This book was released on 2007-05-31 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale materials modelling offers an integrated approach to modelling material behaviour across a range of scales from the electronic, atomic and microstructural up to the component level. As a result, it provides valuable new insights into complex structures and their properties, opening the way to develop new, multi-functional materials together with improved process and product designs. Multiscale materials modelling summarises some of the key techniques and their applications.The various chapters cover the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling. The book covers such themes as dislocation behaviour and plasticity as well as the modelling of structural materials such as metals, polymers and ceramics. With its distinguished editor and international team of contributors, Multiscale materials modelling is a valuable reference for both the modelling community and those in industry wanting to know more about how multiscale materials modelling can help optimise product and process design. - Reviews the principles and applications of mult-scale materials modelling - Covers themes such as dislocation behaviour and plasticity and the modelling of structural materials - Examines the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling
Book Synopsis Multiscale Modeling of Heterogeneous Structures by : Jurica Sorić
Download or read book Multiscale Modeling of Heterogeneous Structures written by Jurica Sorić and published by Springer. This book was released on 2017-11-30 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of multiscale approaches and homogenization procedures as well as damage evaluation and crack initiation, and addresses recent advances in the analysis and discretization of heterogeneous materials. It also highlights the state of the art in this research area with respect to different computational methods, software development and applications to engineering structures. The first part focuses on defects in composite materials including their numerical and experimental investigations; elastic as well as elastoplastic constitutive models are considered, where the modeling has been performed at macro- and micro levels. The second part is devoted to novel computational schemes applied on different scales and discusses the validation of numerical results. The third part discusses gradient enhanced modeling, in particular quasi-brittle and ductile damage, using the gradient enhanced approach. The final part addresses thermoplasticity, solid-liquid mixtures and ferroelectric models. The contents are based on the international workshop “Multiscale Modeling of Heterogeneous Structures” (MUMO 2016), held in Dubrovnik, Croatia in September 2016.
Book Synopsis Multiscale Modeling for Process Safety Applications by : Arnab Chakrabarty
Download or read book Multiscale Modeling for Process Safety Applications written by Arnab Chakrabarty and published by Butterworth-Heinemann. This book was released on 2015-11-29 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving problems involving multiple scales, such as how a flammable vapor cloud might behave if ignited, this book provides information on the fundamental topics of toxic, fire, and air explosion modeling, as well as modeling jet and pool fires using computational fluid dynamics. The book goes on to cover nanomaterial toxicity, QPSR analysis on relation of chemical structure to flash point, molecular structure and burning velocity, first principle studies of reactive chemicals, water and air reactive chemicals, and dust explosions. Chemical and process safety professionals, as well as faculty and graduate researchers, will benefit from the detailed coverage provided in this book. - Provides the only comprehensive source addressing the use of multiscale modeling in the context of process safety - Bridges multiscale modeling with process safety, enabling the reader to understand mapping between problem detail and effective usage of resources - Presents an overall picture of addressing safety problems in all levels of modeling and the latest approaches to each in the field - Features worked out examples, case studies, and a question bank to aid understanding and involvement for the reader
Book Synopsis Grain Boundary Segregation in Metals by : Pavel Lejcek
Download or read book Grain Boundary Segregation in Metals written by Pavel Lejcek and published by Springer Science & Business Media. This book was released on 2010-07-20 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.
Book Synopsis Multiscale Materials Modeling for Nanomechanics by : Christopher R. Weinberger
Download or read book Multiscale Materials Modeling for Nanomechanics written by Christopher R. Weinberger and published by Springer. This book was released on 2016-08-30 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.
Book Synopsis Integrated Computational Materials Engineering (ICME) for Metals by : Mark F. Horstemeyer
Download or read book Integrated Computational Materials Engineering (ICME) for Metals written by Mark F. Horstemeyer and published by John Wiley & Sons. This book was released on 2012-06-07 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-technology tools for designing, optimizing, and manufacturing new materials Integrated computational materials engineering (ICME) uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. Increasingly, ICME is the preferred paradigm for design, development, and manufacturing of structural products. Written by one of the world's leading ICME experts, this text delivers a comprehensive, practical introduction to the field, guiding readers through multiscale materials processing modeling and simulation with easy-to-follow explanations and examples. Following an introductory chapter exploring the core concepts and the various disciplines that have contributed to the development of ICME, the text covers the following important topics with their associated length scale bridging methodologies: Macroscale continuum internal state variable plasticity and damage theory and multistage fatigue Mesoscale analysis: continuum theory methods with discrete features and methods Discrete dislocation dynamics simulations Atomistic modeling methods Electronics structures calculations Next, the author provides three chapters dedicated to detailed case studies, including "From Atoms to Autos: A Redesign of a Cadillac Control Arm," that show how the principles and methods of ICME work in practice. The final chapter examines the future of ICME, forecasting the development of new materials and engineering structures with the help of a cyberinfrastructure that has been recently established. Integrated Computational Materials Engineering (ICME) for Metals is recommended for both students and professionals in engineering and materials science, providing them with new state-of-the-technology tools for selecting, designing, optimizing, and manufacturing new materials. Instructors who adopt this text for coursework can take advantage of PowerPoint lecture notes, a questions and solutions manual, and tutorials to guide students through the models and codes discussed in the text.
Book Synopsis Multiscale Phenomena in Materials - Experiments in Modeling: Volume 578 by : I. M. Robertson
Download or read book Multiscale Phenomena in Materials - Experiments in Modeling: Volume 578 written by I. M. Robertson and published by Mrs Proceedings. This book was released on 2000-07-20 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
Book Synopsis Multiscale Modeling of Heterogenous Materials by : Oana Cazacu
Download or read book Multiscale Modeling of Heterogenous Materials written by Oana Cazacu and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: A material's various proprieties is based on its microscopic and nanoscale structures. This book provides an overview of recent advances in computational methods for linking phenomena in systems that span large ranges of time and spatial scales. Particular attention is given to predicting macroscopic properties based on subscale behaviors. Given the book’s extensive coverage of multi-scale methods for modeling both metallic and geologic materials, it will be an invaluable reading for graduate students, scientists, and practitioners alike.
Book Synopsis Computer Simulations of Dislocations by : Vasily Bulatov
Download or read book Computer Simulations of Dislocations written by Vasily Bulatov and published by Oxford University Press. This book was released on 2006-11-02 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a variety of methods for computer simulations of crystal defects in the form of "numerical recipes", complete with computer codes and analysis tools. By working through numerous case studies and problems, this book provides a useful starter kit for further method development in the computational materials sciences.
Book Synopsis An Introduction to Composite Materials by : D. Hull
Download or read book An Introduction to Composite Materials written by D. Hull and published by Cambridge University Press. This book was released on 1996-08-13 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.
Book Synopsis Interfaces in Crystalline Materials by : A.P. Sutton
Download or read book Interfaces in Crystalline Materials written by A.P. Sutton and published by OUP Oxford. This book was released on 2006-12-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of interfaces within and between materials is a central field which is relevant to almost all aspects of materials science. This book is intended to serve as a graduate text consisting of four inter-related parts spanning the structure, thermodynamics, kinetics, and properties of interfaces in crystalline materials.