Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Dynamics And Analytic Number Theory
Download Dynamics And Analytic Number Theory full books in PDF, epub, and Kindle. Read online Dynamics And Analytic Number Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Dynamics and Analytic Number Theory by : Dzmitry Badziahin
Download or read book Dynamics and Analytic Number Theory written by Dzmitry Badziahin and published by Cambridge University Press. This book was released on 2016-11-10 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents current research in various topics, including homogeneous dynamics, Diophantine approximation and combinatorics.
Book Synopsis Number Theory and Dynamical Systems by : M. M. Dodson
Download or read book Number Theory and Dynamical Systems written by M. M. Dodson and published by Cambridge University Press. This book was released on 1989-11-09 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability of the solar system where problems of small divisors associated with the near resonance of planetary frequencies arose. Previously the question of the stability of the solar system was answered in more general terms by the celebrated KAM theorem, in which the relationship between near resonance (and so Diophantine approximation) and stability is of central importance. Other examples of the connections involve the work of Szemeredi and Furstenberg, and Sprindzuk. As well as containing results on the relationship between number theory and dynamical systems, the book also includes some more speculative and exploratory work which should stimulate interest in different approaches to old problems.
Book Synopsis Ergodic Theory by : Manfred Einsiedler
Download or read book Ergodic Theory written by Manfred Einsiedler and published by Springer Science & Business Media. This book was released on 2010-09-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
Book Synopsis Holomorphic Dynamics by : S. Morosawa
Download or read book Holomorphic Dynamics written by S. Morosawa and published by Cambridge University Press. This book was released on 2000-01-13 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2000, is a comprehensive introduction to holomorphic dynamics, that is the dynamics induced by the iteration of various analytic maps in complex number spaces. This has been the focus of much attention in recent years, with, for example, the discovery of the Mandelbrot set, and work on chaotic behaviour of quadratic maps. The treatment is mathematically unified, emphasizing the substantial role played by classical complex analysis in understanding holomorphic dynamics as well as giving an up-to-date coverage of the modern theory. The authors cover entire functions, Kleinian groups and polynomial automorphisms of several complex variables such as complex Henon maps, as well as the case of rational functions. The book will be welcomed by graduate students and professionals in pure mathematics and science who seek a reasonably self-contained introduction to this exciting area.
Book Synopsis Analytical Dynamics by : Mark D. Ardema
Download or read book Analytical Dynamics written by Mark D. Ardema and published by Springer Science & Business Media. This book was released on 2006-10-31 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes a traditional approach to the development of the methods of analytical dynamics, using two types of examples throughout: simple illustrations of key results and thorough applications to complex, real-life problems.
Book Synopsis An Illustrated Theory of Numbers by : Martin H. Weissman
Download or read book An Illustrated Theory of Numbers written by Martin H. Weissman and published by American Mathematical Soc.. This book was released on 2020-09-15 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.
Book Synopsis Potential Theory and Dynamics on the Berkovich Projective Line by : Matthew Baker
Download or read book Potential Theory and Dynamics on the Berkovich Projective Line written by Matthew Baker and published by American Mathematical Soc.. This book was released on 2010-03-10 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to develop the foundations of potential theory and rational dynamics on the Berkovich projective line over an arbitrary complete, algebraically closed non-Archimedean field. In addition to providing a concrete and ``elementary'' introduction to Berkovich analytic spaces and to potential theory and rational iteration on the Berkovich line, the book contains applications to arithmetic geometry and arithmetic dynamics. A number of results in the book are new, and most have not previously appeared in book form. Three appendices--on analysis, $\mathbb{R}$-trees, and Berkovich's general theory of analytic spaces--are included to make the book as self-contained as possible. The authors first give a detailed description of the topological structure of the Berkovich projective line and then introduce the Hsia kernel, the fundamental kernel for potential theory. Using the theory of metrized graphs, they define a Laplacian operator on the Berkovich line and construct theories of capacities, harmonic and subharmonic functions, and Green's functions, all of which are strikingly similar to their classical complex counterparts. After developing a theory of multiplicities for rational functions, they give applications to non-Archimedean dynamics, including local and global equidistribution theorems, fixed point theorems, and Berkovich space analogues of many fundamental results from the classical Fatou-Julia theory of rational iteration. They illustrate the theory with concrete examples and exposit Rivera-Letelier's results concerning rational dynamics over the field of $p$-adic complex numbers. They also establish Berkovich space versions of arithmetic results such as the Fekete-Szego theorem and Bilu's equidistribution theorem.
Book Synopsis Dynamics and Analytic Number Theory by : Dzmitry Badziahin
Download or read book Dynamics and Analytic Number Theory written by Dzmitry Badziahin and published by . This book was released on 2016 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents current research in various topics, including homogeneous dynamics, Diophantine approximation and combinatorics.
Book Synopsis Introduction to Modern Number Theory by : Yu. I. Manin
Download or read book Introduction to Modern Number Theory written by Yu. I. Manin and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been called ‘startlingly up-to-date’, and in this corrected second printing you can be sure that it’s even more contemporaneous. It surveys from a unified point of view both the modern state and the trends of continuing development in various branches of number theory. Illuminated by elementary problems, the central ideas of modern theories are laid bare. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories.
Book Synopsis Introduction to Analytic and Probabilistic Number Theory by : G. Tenenbaum
Download or read book Introduction to Analytic and Probabilistic Number Theory written by G. Tenenbaum and published by Cambridge University Press. This book was released on 1995-06-30 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained introduction to analytic methods in number theory, assuming on the part of the reader only what is typically learned in a standard undergraduate degree course. It offers to students and those beginning research a systematic and consistent account of the subject but will also be a convenient resource and reference for more experienced mathematicians. These aspects are aided by the inclusion at the end of each chapter a section of bibliographic notes and detailed exercises.
Book Synopsis Advanced Topics in the Arithmetic of Elliptic Curves by : Joseph H. Silverman
Download or read book Advanced Topics in the Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
Book Synopsis Moduli Spaces and Arithmetic Dynamics by : Joseph H. Silverman
Download or read book Moduli Spaces and Arithmetic Dynamics written by Joseph H. Silverman and published by American Mathematical Soc.. This book was released on with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Iteration of Rational Functions by : Alan F. Beardon
Download or read book Iteration of Rational Functions written by Alan F. Beardon and published by Springer Science & Business Media. This book was released on 2000-09-27 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on complex analytic dynamics, which dates from 1916 and is currently attracting considerable interest. The text provides a comprehensive, well-organized treatment of the foundations of the theory of iteration of rational functions of a complex variable. The coverage extends from early memoirs of Fatou and Julia to important recent results and methods of Sullivan and Shishikura. Many details of the proofs have not appeared in print before.
Book Synopsis Number Theory Revealed: A Masterclass by : Andrew Granville
Download or read book Number Theory Revealed: A Masterclass written by Andrew Granville and published by American Mathematical Society. This book was released on 2020-09-23 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number Theory Revealed: A Masterclass acquaints enthusiastic students with the “Queen of Mathematics”. The text offers a fresh take on congruences, power residues, quadratic residues, primes, and Diophantine equations and presents hot topics like cryptography, factoring, and primality testing. Students are also introduced to beautiful enlightening questions like the structure of Pascal's triangle mod $p$ and modern twists on traditional questions like the values represented by binary quadratic forms, the anatomy of integers, and elliptic curves. This Masterclass edition contains many additional chapters and appendices not found in Number Theory Revealed: An Introduction, highlighting beautiful developments and inspiring other subjects in mathematics (like algebra). This allows instructors to tailor a course suited to their own (and their students') interests. There are new yet accessible topics like the curvature of circles in a tiling of a circle by circles, the latest discoveries on gaps between primes, a new proof of Mordell's Theorem for congruent elliptic curves, and a discussion of the $abc$-conjecture including its proof for polynomials. About the Author: Andrew Granville is the Canada Research Chair in Number Theory at the University of Montreal and professor of mathematics at University College London. He has won several international writing prizes for exposition in mathematics, including the 2008 Chauvenet Prize and the 2019 Halmos-Ford Prize, and is the author of Prime Suspects (Princeton University Press, 2019), a beautifully illustrated graphic novel murder mystery that explores surprising connections between the anatomies of integers and of permutations.
Book Synopsis Dynamics and Analytic Number Theory by : Dzmitry Badziahin
Download or read book Dynamics and Analytic Number Theory written by Dzmitry Badziahin and published by . This book was released on 2016 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Problems in Analytic Number Theory by : Danyal Sadik
Download or read book Problems in Analytic Number Theory written by Danyal Sadik and published by . This book was released on 2016-08-01 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: "One might have thought that number theory was simply the study of numbers, but that is too broad a definition, since numbers are almost ubiquitous in mathematics. Number theory is a vast and fascinating field of mathematics, sometimes called ""higher arithmetic,"" consisting of the study of the properties of whole numbers. Primes and prime factorization are especially important in number theory, as are a number of functions such as the divisor function, Riemann zeta function, and totient function. Analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. Analytic number theory, and its applications and interactions, are currently experiencing intensive progress, in sometimes unexpected directions. In recent years, many important classical questions have seen spectacular advances based on new techniques; conversely, methods developed in analytic number theory have led to the solution of striking problems in other fields. Recent advances in analytic number theory have had repercussions in various mathematical subjects, such as harmonic analysis, ergodic theory and dynamics, additive and multiplicative combinatorics and theoretical computer science. The biggest technical change after 1950 has been the development of sieve methods, particularly in multiplicative problems. These are combinatorial in nature, and quite varied. The extremal branch of combinatorial theory has in return been greatly influenced by the value placed in analytic number theory on quantitative upper and lower bounds. Another recent development is probabilistic number theory, which uses methods from probability theory to estimate the distribution of number theoretic functions, such as how many prime divisors a number has. Problems in Analytic Number Theory present a problem-solving approach to the difficult subject of analytic number theory. This book is focused at researchers, teachers, and graduate students interested in number theory and its links with other branches of science."
Book Synopsis Recent Perspectives in Random Matrix Theory and Number Theory by : F. Mezzadri
Download or read book Recent Perspectives in Random Matrix Theory and Number Theory written by F. Mezzadri and published by Cambridge University Press. This book was released on 2005-06-21 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a grounding in random matrix techniques applied to analytic number theory.