Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Duality In Measure Theory
Download Duality In Measure Theory full books in PDF, epub, and Kindle. Read online Duality In Measure Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Duality in Measure Theory by : C. Constantinescu
Download or read book Duality in Measure Theory written by C. Constantinescu and published by Springer. This book was released on 2006-11-15 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Arithmetic Duality Theorems by : J. S. Milne
Download or read book Arithmetic Duality Theorems written by J. S. Milne and published by . This book was released on 1986 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, published for the first time, are the complete proofs of the fundamental arithmetic duality theorems that have come to play an increasingly important role in number theory and arithmetic geometry. The text covers these theorems in Galois cohomology, ,tale cohomology, and flat cohomology and addresses applications in the above areas. The writing is expository and the book will serve as an invaluable reference text as well as an excellent introduction to the subject.
Book Synopsis Handbook of Measure Theory by : E. Pap
Download or read book Handbook of Measure Theory written by E. Pap and published by Elsevier. This book was released on 2002-10-31 with total page 1633 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this Handbook isto survey measure theory with its many different branches and itsrelations with other areas of mathematics. Mostly aggregating many classical branches of measure theory the aim of the Handbook is also to cover new fields, approaches and applications whichsupport the idea of "measure" in a wider sense, e.g. the ninth part of the Handbook. Although chapters are written of surveys in the variousareas they contain many special topics and challengingproblems valuable for experts and rich sources of inspiration.Mathematicians from other areas as well as physicists, computerscientists, engineers and econometrists will find useful results andpowerful methods for their research. The reader may find in theHandbook many close relations to other mathematical areas: realanalysis, probability theory, statistics, ergodic theory,functional analysis, potential theory, topology, set theory,geometry, differential equations, optimization, variationalanalysis, decision making and others. The Handbook is a richsource of relevant references to articles, books and lecturenotes and it contains for the reader's convenience an extensivesubject and author index.
Book Synopsis Stone Spaces by : Peter T. Johnstone
Download or read book Stone Spaces written by Peter T. Johnstone and published by Cambridge University Press. This book was released on 1982 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified treatment of the corpus of mathematics that has developed out of M. H. Stone's representation theorem for Boolean algebras (1936) which has applications in almost every area of modern mathematics.
Book Synopsis Multi-Output Production and Duality: Theory and Applications by : Rolf Färe
Download or read book Multi-Output Production and Duality: Theory and Applications written by Rolf Färe and published by Springer Science & Business Media. This book was released on 1994-12-31 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a complete summary of the major results in duality theory pioneered by Ronald W. Shephard. Building on this base, the authors present new findings including the duality relationship between the profit function and the eight equivalent representations of technology that were elucidated by Shephard. Finally, it provides a number of applications of duality theory to economic problems. These include efficiency measurement, index number theory, shadow pricing, cost-benefit analysis and econometric estimation.
Book Synopsis A Course in Functional Analysis and Measure Theory by : Vladimir Kadets
Download or read book A Course in Functional Analysis and Measure Theory written by Vladimir Kadets and published by Springer. This book was released on 2018-07-10 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis. Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory. Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.
Book Synopsis Convex Duality and Financial Mathematics by : Peter Carr
Download or read book Convex Duality and Financial Mathematics written by Peter Carr and published by Springer. This book was released on 2018-07-18 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise introduction to convex duality in financial mathematics. Convex duality plays an essential role in dealing with financial problems and involves maximizing concave utility functions and minimizing convex risk measures. Recently, convex and generalized convex dualities have shown to be crucial in the process of the dynamic hedging of contingent claims. Common underlying principles and connections between different perspectives are developed; results are illustrated through graphs and explained heuristically. This book can be used as a reference and is aimed toward graduate students, researchers and practitioners in mathematics, finance, economics, and optimization. Topics include: Markowitz portfolio theory, growth portfolio theory, fundamental theorem of asset pricing emphasizing the duality between utility optimization and pricing by martingale measures, risk measures and its dual representation, hedging and super-hedging and its relationship with linear programming duality and the duality relationship in dynamic hedging of contingent claims
Book Synopsis Applications of Measure Theory to Statistics by : Gogi Pantsulaia
Download or read book Applications of Measure Theory to Statistics written by Gogi Pantsulaia and published by Springer. This book was released on 2016-12-22 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to put strong reasonable mathematical senses in notions of objectivity and subjectivity for consistent estimations in a Polish group by using the concept of Haar null sets in the corresponding group. This new approach – naturally dividing the class of all consistent estimates of an unknown parameter in a Polish group into disjoint classes of subjective and objective estimates – helps the reader to clarify some conjectures arising in the criticism of null hypothesis significance testing. The book also acquaints readers with the theory of infinite-dimensional Monte Carlo integration recently developed for estimation of the value of infinite-dimensional Riemann integrals over infinite-dimensional rectangles. The book is addressed both to graduate students and to researchers active in the fields of analysis, measure theory, and mathematical statistics.
Book Synopsis Algebra: Chapter 0 by : Paolo Aluffi
Download or read book Algebra: Chapter 0 written by Paolo Aluffi and published by American Mathematical Soc.. This book was released on 2021-11-09 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Book Synopsis Mathematical Analysis and Applications by : Michael Ruzhansky
Download or read book Mathematical Analysis and Applications written by Michael Ruzhansky and published by John Wiley & Sons. This book was released on 2018-04-11 with total page 1021 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative text that presents the current problems, theories, and applications of mathematical analysis research Mathematical Analysis and Applications: Selected Topics offers the theories, methods, and applications of a variety of targeted topics including: operator theory, approximation theory, fixed point theory, stability theory, minimization problems, many-body wave scattering problems, Basel problem, Corona problem, inequalities, generalized normed spaces, variations of functions and sequences, analytic generalizations of the Catalan, Fuss, and Fuss–Catalan Numbers, asymptotically developable functions, convex functions, Gaussian processes, image analysis, and spectral analysis and spectral synthesis. The authors—a noted team of international researchers in the field— highlight the basic developments for each topic presented and explore the most recent advances made in their area of study. The text is presented in such a way that enables the reader to follow subsequent studies in a burgeoning field of research. This important text: Presents a wide-range of important topics having current research importance and interdisciplinary applications such as game theory, image processing, creation of materials with a desired refraction coefficient, etc. Contains chapters written by a group of esteemed researchers in mathematical analysis Includes problems and research questions in order to enhance understanding of the information provided Offers references that help readers advance to further study Written for researchers, graduate students, educators, and practitioners with an interest in mathematical analysis, Mathematical Analysis and Applications: Selected Topics includes the most recent research from a range of mathematical fields.
Book Synopsis Measure and Category by : John C. Oxtoby
Download or read book Measure and Category written by John C. Oxtoby and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this edition, a set of Supplementary Notes and Remarks has been added at the end, grouped according to chapter. Some of these call attention to subsequent developments, others add further explanation or additional remarks. Most of the remarks are accompanied by a briefly indicated proof, which is sometimes different from the one given in the reference cited. The list of references has been expanded to include many recent contributions, but it is still not intended to be exhaustive. John C. Oxtoby Bryn Mawr, April 1980 Preface to the First Edition This book has two main themes: the Baire category theorem as a method for proving existence, and the "duality" between measure and category. The category method is illustrated by a variety of typical applications, and the analogy between measure and category is explored in all of its ramifications. To this end, the elements of metric topology are reviewed and the principal properties of Lebesgue measure are derived. It turns out that Lebesgue integration is not essential for present purposes-the Riemann integral is sufficient. Concepts of general measure theory and topology are introduced, but not just for the sake of generality. Needless to say, the term "category" refers always to Baire category; it has nothing to do with the term as it is used in homological algebra.
Book Synopsis Abstract Duality Pairs In Analysis by : Charles W Swartz
Download or read book Abstract Duality Pairs In Analysis written by Charles W Swartz and published by World Scientific. This book was released on 2017-12-20 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a theory of abstract duality pairs which arises by replacing the scalar field by an Abelian topological group in the theory of dual pair of vector spaces. Examples of abstract duality pairs are vector valued series, spaces of vector valued measures, spaces of vector valued integrable functions, spaces of linear operators and vector valued sequence spaces. These examples give rise to numerous applications such as abstract versions of the Orlicz-Pettis Theorem on subseries convergent series, the Uniform Boundedness Principle, the Banach-Steinhaus Theorem, the Nikodym Convergence theorems and the Vitali-Hahn-Saks Theorem from measure theory and the Hahn-Schur Theorem from summability. There are no books on the current market which cover the material in this book. Readers will find interesting functional analysis and the many applications to various topics in real analysis.
Book Synopsis Measure, Integration & Real Analysis by : Sheldon Axler
Download or read book Measure, Integration & Real Analysis written by Sheldon Axler and published by Springer Nature. This book was released on 2019-11-29 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Book Synopsis Classical and Discrete Functional Analysis with Measure Theory by : Martin Buntinas
Download or read book Classical and Discrete Functional Analysis with Measure Theory written by Martin Buntinas and published by Cambridge University Press. This book was released on 2022-01-20 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced undergraduate/beginning graduate text covers measure theory and discrete aspects of functional analysis, with 760 exercises.
Book Synopsis Conjugate Duality and Optimization by : R. Tyrrell Rockafellar
Download or read book Conjugate Duality and Optimization written by R. Tyrrell Rockafellar and published by SIAM. This book was released on 1974-01-01 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a relatively brief introduction to conjugate duality in both finite- and infinite-dimensional problems. An emphasis is placed on the fundamental importance of the concepts of Lagrangian function, saddle-point, and saddle-value. General examples are drawn from nonlinear programming, approximation, stochastic programming, the calculus of variations, and optimal control.
Book Synopsis Basic Category Theory by : Tom Leinster
Download or read book Basic Category Theory written by Tom Leinster and published by Cambridge University Press. This book was released on 2014-07-24 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: A short introduction ideal for students learning category theory for the first time.
Download or read book Measure Theory written by Donald L. Cohn and published by Birkhäuser. This book was released on 2015-08-06 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended as a self-contained introduction to measure theory, this textbook also includes a comprehensive treatment of integration on locally compact Hausdorff spaces, the analytic and Borel subsets of Polish spaces, and Haar measures on locally compact groups. This second edition includes a chapter on measure-theoretic probability theory, plus brief treatments of the Banach-Tarski paradox, the Henstock-Kurzweil integral, the Daniell integral, and the existence of liftings. Measure Theory provides a solid background for study in both functional analysis and probability theory and is an excellent resource for advanced undergraduate and graduate students in mathematics. The prerequisites for this book are basic courses in point-set topology and in analysis, and the appendices present a thorough review of essential background material.