Planning with Markov Decision Processes

Download Planning with Markov Decision Processes PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015592
Total Pages : 204 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Planning with Markov Decision Processes by : Mausam Natarajan

Download or read book Planning with Markov Decision Processes written by Mausam Natarajan and published by Springer Nature. This book was released on 2022-06-01 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Decision Processes (MDPs) are widely popular in Artificial Intelligence for modeling sequential decision-making scenarios with probabilistic dynamics. They are the framework of choice when designing an intelligent agent that needs to act for long periods of time in an environment where its actions could have uncertain outcomes. MDPs are actively researched in two related subareas of AI, probabilistic planning and reinforcement learning. Probabilistic planning assumes known models for the agent's goals and domain dynamics, and focuses on determining how the agent should behave to achieve its objectives. On the other hand, reinforcement learning additionally learns these models based on the feedback the agent gets from the environment. This book provides a concise introduction to the use of MDPs for solving probabilistic planning problems, with an emphasis on the algorithmic perspective. It covers the whole spectrum of the field, from the basics to state-of-the-art optimal and approximation algorithms. We first describe the theoretical foundations of MDPs and the fundamental solution techniques for them. We then discuss modern optimal algorithms based on heuristic search and the use of structured representations. A major focus of the book is on the numerous approximation schemes for MDPs that have been developed in the AI literature. These include determinization-based approaches, sampling techniques, heuristic functions, dimensionality reduction, and hierarchical representations. Finally, we briefly introduce several extensions of the standard MDP classes that model and solve even more complex planning problems. Table of Contents: Introduction / MDPs / Fundamental Algorithms / Heuristic Search Algorithms / Symbolic Algorithms / Approximation Algorithms / Advanced Notes

Learning Representation and Control in Markov Decision Processes

Download Learning Representation and Control in Markov Decision Processes PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1601982380
Total Pages : 185 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Learning Representation and Control in Markov Decision Processes by : Sridhar Mahadevan

Download or read book Learning Representation and Control in Markov Decision Processes written by Sridhar Mahadevan and published by Now Publishers Inc. This book was released on 2009 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive survey of techniques to automatically construct basis functions or features for value function approximation in Markov decision processes and reinforcement learning.

Reinforcement Learning

Download Reinforcement Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642276458
Total Pages : 653 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning by : Marco Wiering

Download or read book Reinforcement Learning written by Marco Wiering and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.

A Concise Introduction to Models and Methods for Automated Planning

Download A Concise Introduction to Models and Methods for Automated Planning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015649
Total Pages : 132 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis A Concise Introduction to Models and Methods for Automated Planning by : Hector Radanovic

Download or read book A Concise Introduction to Models and Methods for Automated Planning written by Hector Radanovic and published by Springer Nature. This book was released on 2022-05-31 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning is the model-based approach to autonomous behavior where the agent behavior is derived automatically from a model of the actions, sensors, and goals. The main challenges in planning are computational as all models, whether featuring uncertainty and feedback or not, are intractable in the worst case when represented in compact form. In this book, we look at a variety of models used in AI planning, and at the methods that have been developed for solving them. The goal is to provide a modern and coherent view of planning that is precise, concise, and mostly self-contained, without being shallow. For this, we make no attempt at covering the whole variety of planning approaches, ideas, and applications, and focus on the essentials. The target audience of the book are students and researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive science perspective. Table of Contents: Preface / Planning and Autonomous Behavior / Classical Planning: Full Information and Deterministic Actions / Classical Planning: Variations and Extensions / Beyond Classical Planning: Transformations / Planning with Sensing: Logical Models / MDP Planning: Stochastic Actions and Full Feedback / POMDP Planning: Stochastic Actions and Partial Feedback / Discussion / Bibliography / Author's Biography

Constrained Markov Decision Processes

Download Constrained Markov Decision Processes PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351458248
Total Pages : 256 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Constrained Markov Decision Processes by : Eitan Altman

Download or read book Constrained Markov Decision Processes written by Eitan Altman and published by Routledge. This book was released on 2021-12-17 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other.

Reinforcement Learning, second edition

Download Reinforcement Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262352702
Total Pages : 549 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton

Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Automated Planning and Acting

Download Automated Planning and Acting PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316720551
Total Pages : 373 pages
Book Rating : 4.3/5 (167 download)

DOWNLOAD NOW!


Book Synopsis Automated Planning and Acting by : Malik Ghallab

Download or read book Automated Planning and Acting written by Malik Ghallab and published by Cambridge University Press. This book was released on 2016-08-09 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autonomous AI systems need complex computational techniques for planning and performing actions. Planning and acting require significant deliberation because an intelligent system must coordinate and integrate these activities in order to act effectively in the real world. This book presents a comprehensive paradigm of planning and acting using the most recent and advanced automated-planning techniques. It explains the computational deliberation capabilities that allow an actor, whether physical or virtual, to reason about its actions, choose them, organize them purposefully, and act deliberately to achieve an objective. Useful for students, practitioners, and researchers, this book covers state-of-the-art planning techniques, acting techniques, and their integration which will allow readers to design intelligent systems that are able to act effectively in the real world.

Probabilistic Graphical Models

Download Probabilistic Graphical Models PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030619435
Total Pages : 370 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Graphical Models by : Luis Enrique Sucar

Download or read book Probabilistic Graphical Models written by Luis Enrique Sucar and published by Springer Nature. This book was released on 2020-12-23 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Topics and features: Presents a unified framework encompassing all of the main classes of PGMs Explores the fundamental aspects of representation, inference and learning for each technique Examines new material on partially observable Markov decision processes, and graphical models Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models Covers multidimensional Bayesian classifiers, relational graphical models, and causal models Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks Outlines the practical application of the different techniques Suggests possible course outlines for instructors This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference. Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.

Planning Algorithms

Download Planning Algorithms PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521862059
Total Pages : 844 pages
Book Rating : 4.8/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Planning Algorithms by : Steven M. LaValle

Download or read book Planning Algorithms written by Steven M. LaValle and published by Cambridge University Press. This book was released on 2006-05-29 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.

Markov Decision Processes in Artificial Intelligence

Download Markov Decision Processes in Artificial Intelligence PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118620100
Total Pages : 367 pages
Book Rating : 4.1/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Markov Decision Processes in Artificial Intelligence by : Olivier Sigaud

Download or read book Markov Decision Processes in Artificial Intelligence written by Olivier Sigaud and published by John Wiley & Sons. This book was released on 2013-03-04 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as reinforcement learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in artificial intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, reinforcement learning, partially observable MDPs, Markov games and the use of non-classical criteria). It then presents more advanced research trends in the field and gives some concrete examples using illustrative real life applications.

Algorithms for Reinforcement Learning

Download Algorithms for Reinforcement Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015517
Total Pages : 89 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Reinforcement Learning by : Csaba Grossi

Download or read book Algorithms for Reinforcement Learning written by Csaba Grossi and published by Springer Nature. This book was released on 2022-05-31 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration

A Concise Introduction to Decentralized POMDPs

Download A Concise Introduction to Decentralized POMDPs PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319289292
Total Pages : 146 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis A Concise Introduction to Decentralized POMDPs by : Frans A. Oliehoek

Download or read book A Concise Introduction to Decentralized POMDPs written by Frans A. Oliehoek and published by Springer. This book was released on 2016-06-03 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: reinforcement learning, decision-theoretic planning for single agents, classical multiagent planning, decentralized control, and operations research.

AAAI - 2002

Download AAAI - 2002 PDF Online Free

Author :
Publisher : AAAI Press
ISBN 13 : 9780262511292
Total Pages : 1070 pages
Book Rating : 4.5/5 (112 download)

DOWNLOAD NOW!


Book Synopsis AAAI - 2002 by : American Association for Artificial Intelligence

Download or read book AAAI - 2002 written by American Association for Artificial Intelligence and published by AAAI Press. This book was released on 2002 with total page 1070 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual AAAI National Conference provides a forum for information exchange and interaction among researchers from all disciplines of AI. Contributions include theoretical, experimental and empirical results. Topics cover principles of cognition, perception and action; the design, application and evaluation of AI algorithms and systems; architectures and frameworks for classses of AI systems; and analyses of tasks and domains in which intelligent systems perform. The Innovative Applications Conference highlights successful application of AI technology and explores issues, methods and lessons learned in the development and deployment of AI applications.

Heuristic Search

Download Heuristic Search PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080919731
Total Pages : 865 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Heuristic Search by : Stefan Edelkamp

Download or read book Heuristic Search written by Stefan Edelkamp and published by Elsevier. This book was released on 2011-05-31 with total page 865 pages. Available in PDF, EPUB and Kindle. Book excerpt: Search has been vital to artificial intelligence from the very beginning as a core technique in problem solving. The authors present a thorough overview of heuristic search with a balance of discussion between theoretical analysis and efficient implementation and application to real-world problems. Current developments in search such as pattern databases and search with efficient use of external memory and parallel processing units on main boards and graphics cards are detailed. Heuristic search as a problem solving tool is demonstrated in applications for puzzle solving, game playing, constraint satisfaction and machine learning. While no previous familiarity with heuristic search is necessary the reader should have a basic knowledge of algorithms, data structures, and calculus. Real-world case studies and chapter ending exercises help to create a full and realized picture of how search fits into the world of artificial intelligence and the one around us. - Provides real-world success stories and case studies for heuristic search algorithms - Includes many AI developments not yet covered in textbooks such as pattern databases, symbolic search, and parallel processing units

IJCAI-95

Download IJCAI-95 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1086 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis IJCAI-95 by : Christopher S. Mellish

Download or read book IJCAI-95 written by Christopher S. Mellish and published by . This book was released on 1995 with total page 1086 pages. Available in PDF, EPUB and Kindle. Book excerpt:

The Logic of Adaptive Behavior

Download The Logic of Adaptive Behavior PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 1586039695
Total Pages : 508 pages
Book Rating : 4.5/5 (86 download)

DOWNLOAD NOW!


Book Synopsis The Logic of Adaptive Behavior by : Martijn van Otterlo

Download or read book The Logic of Adaptive Behavior written by Martijn van Otterlo and published by IOS Press. This book was released on 2009 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov decision processes have become the de facto standard in modeling and solving sequential decision making problems under uncertainty. This book studies lifting Markov decision processes, reinforcement learning and dynamic programming to the first-order (or, relational) setting.

Scalable Uncertainty Management

Download Scalable Uncertainty Management PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319235400
Total Pages : 427 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Scalable Uncertainty Management by : Christoph Beierle

Download or read book Scalable Uncertainty Management written by Christoph Beierle and published by Springer. This book was released on 2015-09-15 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 9th International Conference on Scalable Uncertainty Management, SUM 2015, held in Québec City, QC, Canada, in September 2015. The 25 regular papers and 3 short papers were carefully reviewed and selected from 49 submissions. The call for papers for SUM 2015 solicited submissions in all areas of managing and reasoning with substantial and complex kinds of uncertain, incomplete or inconsistent information. These include applications in decision support systems, risk analysis, machine learning, belief networks, logics of uncertainty, belief revision and update, argumentation, negotiation technologies, semantic web applications, search engines, ontology systems, information fusion, information retrieval, natural language processing, information extraction, image recognition, vision systems, data and text mining, and the consideration of issues such as provenance, trust, heterogeneity, and complexity of data and knowledge.