Distributed Graph Algorithms for Computer Networks

Download Distributed Graph Algorithms for Computer Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447151739
Total Pages : 328 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Distributed Graph Algorithms for Computer Networks by : Kayhan Erciyes

Download or read book Distributed Graph Algorithms for Computer Networks written by Kayhan Erciyes and published by Springer Science & Business Media. This book was released on 2013-05-16 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of key distributed graph algorithms for computer network applications, with a particular emphasis on practical implementation. Topics and features: introduces a range of fundamental graph algorithms, covering spanning trees, graph traversal algorithms, routing algorithms, and self-stabilization; reviews graph-theoretical distributed approximation algorithms with applications in ad hoc wireless networks; describes in detail the implementation of each algorithm, with extensive use of supporting examples, and discusses their concrete network applications; examines key graph-theoretical algorithm concepts, such as dominating sets, and parameters for mobility and energy levels of nodes in wireless ad hoc networks, and provides a contemporary survey of each topic; presents a simple simulator, developed to run distributed algorithms; provides practical exercises at the end of each chapter.

Guide to Graph Algorithms

Download Guide to Graph Algorithms PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319732358
Total Pages : 475 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Guide to Graph Algorithms by : K Erciyes

Download or read book Guide to Graph Algorithms written by K Erciyes and published by Springer. This book was released on 2018-04-13 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This clearly structured textbook/reference presents a detailed and comprehensive review of the fundamental principles of sequential graph algorithms, approaches for NP-hard graph problems, and approximation algorithms and heuristics for such problems. The work also provides a comparative analysis of sequential, parallel and distributed graph algorithms – including algorithms for big data – and an investigation into the conversion principles between the three algorithmic methods. Topics and features: presents a comprehensive analysis of sequential graph algorithms; offers a unifying view by examining the same graph problem from each of the three paradigms of sequential, parallel and distributed algorithms; describes methods for the conversion between sequential, parallel and distributed graph algorithms; surveys methods for the analysis of large graphs and complex network applications; includes full implementation details for the problems presented throughout the text; provides additional supporting material at an accompanying website. This practical guide to the design and analysis of graph algorithms is ideal for advanced and graduate students of computer science, electrical and electronic engineering, and bioinformatics. The material covered will also be of value to any researcher familiar with the basics of discrete mathematics, graph theory and algorithms.

Distributed Graph Coloring

Download Distributed Graph Coloring PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1627050191
Total Pages : 173 pages
Book Rating : 4.6/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Distributed Graph Coloring by : Leonid Barenboim

Download or read book Distributed Graph Coloring written by Leonid Barenboim and published by Morgan & Claypool Publishers. This book was released on 2013-07-01 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of our monograph is to cover the developments on the theoretical foundations of distributed symmetry breaking in the message-passing model. We hope that our monograph will stimulate further progress in this exciting area.

An Introduction to Distributed Algorithms

Download An Introduction to Distributed Algorithms PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262024129
Total Pages : 390 pages
Book Rating : 4.0/5 (241 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Distributed Algorithms by : Valmir C. Barbosa

Download or read book An Introduction to Distributed Algorithms written by Valmir C. Barbosa and published by MIT Press. This book was released on 1996 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Distributed Algorithms takes up some of the main concepts and algorithms, ranging from basic to advanced techniques and applications, that underlie the programming of distributed-memory systems such as computer networks, networks of work-stations, and multiprocessors. Written from the broad perspective of distributed-memory systems in general it includes topics such as algorithms for maximum flow, programme debugging, and simulation that do not appear in more orthodox texts on distributed algorithms.

Distributed Algorithms on Graphs

Download Distributed Algorithms on Graphs PDF Online Free

Author :
Publisher : McGill-Queen's Press - MQUP
ISBN 13 : 9780886290542
Total Pages : 204 pages
Book Rating : 4.2/5 (95 download)

DOWNLOAD NOW!


Book Synopsis Distributed Algorithms on Graphs by : Eli Gafni

Download or read book Distributed Algorithms on Graphs written by Eli Gafni and published by McGill-Queen's Press - MQUP. This book was released on 1986 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains papers presented at the First International Workshop on Distributed Algorithms. The papers present solutions to a wide spectrum of problems (leader election, resource allocation, routing, etc.) and focus on a variety of issues that influence communications complexity.

Distributed Algorithms for Message-Passing Systems

Download Distributed Algorithms for Message-Passing Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642381235
Total Pages : 518 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Distributed Algorithms for Message-Passing Systems by : Michel Raynal

Download or read book Distributed Algorithms for Message-Passing Systems written by Michel Raynal and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed computing is at the heart of many applications. It arises as soon as one has to solve a problem in terms of entities -- such as processes, peers, processors, nodes, or agents -- that individually have only a partial knowledge of the many input parameters associated with the problem. In particular each entity cooperating towards the common goal cannot have an instantaneous knowledge of the current state of the other entities. Whereas parallel computing is mainly concerned with 'efficiency', and real-time computing is mainly concerned with 'on-time computing', distributed computing is mainly concerned with 'mastering uncertainty' created by issues such as the multiplicity of control flows, asynchronous communication, unstable behaviors, mobility, and dynamicity. While some distributed algorithms consist of a few lines only, their behavior can be difficult to understand and their properties hard to state and prove. The aim of this book is to present in a comprehensive way the basic notions, concepts, and algorithms of distributed computing when the distributed entities cooperate by sending and receiving messages on top of an asynchronous network. The book is composed of seventeen chapters structured into six parts: distributed graph algorithms, in particular what makes them different from sequential or parallel algorithms; logical time and global states, the core of the book; mutual exclusion and resource allocation; high-level communication abstractions; distributed detection of properties; and distributed shared memory. The author establishes clear objectives per chapter and the content is supported throughout with illustrative examples, summaries, exercises, and annotated bibliographies. This book constitutes an introduction to distributed computing and is suitable for advanced undergraduate students or graduate students in computer science and computer engineering, graduate students in mathematics interested in distributed computing, and practitioners and engineers involved in the design and implementation of distributed applications. The reader should have a basic knowledge of algorithms and operating systems.

Introduction to Distributed Algorithms

Download Introduction to Distributed Algorithms PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521794831
Total Pages : 612 pages
Book Rating : 4.7/5 (948 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Distributed Algorithms by : Gerard Tel

Download or read book Introduction to Distributed Algorithms written by Gerard Tel and published by Cambridge University Press. This book was released on 2000-09-28 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed algorithms have been the subject of intense development over the last twenty years. The second edition of this successful textbook provides an up-to-date introduction both to the topic, and to the theory behind the algorithms. The clear presentation makes the book suitable for advanced undergraduate or graduate courses, whilst the coverage is sufficiently deep to make it useful for practising engineers and researchers. The author concentrates on algorithms for the point-to-point message passing model, and includes algorithms for the implementation of computer communication networks. Other key areas discussed are algorithms for the control of distributed applications (wave, broadcast, election, termination detection, randomized algorithms for anonymous networks, snapshots, deadlock detection, synchronous systems), and fault-tolerance achievable by distributed algorithms. The two new chapters on sense of direction and failure detectors are state-of-the-art and will provide an entry to research in these still-developing topics.

Introduction to Distributed Self-Stabilizing Algorithms

Download Introduction to Distributed Self-Stabilizing Algorithms PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1681735377
Total Pages : 167 pages
Book Rating : 4.6/5 (817 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Distributed Self-Stabilizing Algorithms by : Karine Altisen

Download or read book Introduction to Distributed Self-Stabilizing Algorithms written by Karine Altisen and published by Morgan & Claypool Publishers. This book was released on 2019-04-15 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at being a comprehensive and pedagogical introduction to the concept of self-stabilization, introduced by Edsger Wybe Dijkstra in 1973. Self-stabilization characterizes the ability of a distributed algorithm to converge within finite time to a configuration from which its behavior is correct (i.e., satisfies a given specification), regardless the arbitrary initial configuration of the system. This arbitrary initial configuration may be the result of the occurrence of a finite number of transient faults. Hence, self-stabilization is actually considered as a versatile non-masking fault tolerance approach, since it recovers from the effect of any finite number of such faults in a unified manner. Another major interest of such an automatic recovery method comes from the difficulty of resetting malfunctioning devices in a large-scale (and so, geographically spread) distributed system (the Internet, Pair-to-Pair networks, and Delay Tolerant Networks are examples of such distributed systems). Furthermore, self-stabilization is usually recognized as a lightweight property to achieve fault tolerance as compared to other classical fault tolerance approaches. Indeed, the overhead, both in terms of time and space, of state-of-the-art self-stabilizing algorithms is commonly small. This makes self-stabilization very attractive for distributed systems equipped of processes with low computational and memory capabilities, such as wireless sensor networks. After more than 40 years of existence, self-stabilization is now sufficiently established as an important field of research in theoretical distributed computing to justify its teaching in advanced research-oriented graduate courses. This book is an initiation course, which consists of the formal definition of self-stabilization and its related concepts, followed by a deep review and study of classical (simple) algorithms, commonly used proof schemes and design patterns, as well as premium results issued from the self-stabilizing community. As often happens in the self-stabilizing area, in this book we focus on the proof of correctness and the analytical complexity of the studied distributed self-stabilizing algorithms. Finally, we underline that most of the algorithms studied in this book are actually dedicated to the high-level atomic-state model, which is the most commonly used computational model in the self-stabilizing area. However, in the last chapter, we present general techniques to achieve self-stabilization in the low-level message passing model, as well as example algorithms.

Graph Algorithms for Data Science

Download Graph Algorithms for Data Science PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 163835054X
Total Pages : 350 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Graph Algorithms for Data Science by : Tomaž Bratanic

Download or read book Graph Algorithms for Data Science written by Tomaž Bratanic and published by Simon and Schuster. This book was released on 2024-03-12 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical methods for analyzing your data with graphs, revealing hidden connections and new insights. Graphs are the natural way to represent and understand connected data. This book explores the most important algorithms and techniques for graphs in data science, with concrete advice on implementation and deployment. You don’t need any graph experience to start benefiting from this insightful guide. These powerful graph algorithms are explained in clear, jargon-free text and illustrations that makes them easy to apply to your own projects. In Graph Algorithms for Data Science you will learn: Labeled-property graph modeling Constructing a graph from structured data such as CSV or SQL NLP techniques to construct a graph from unstructured data Cypher query language syntax to manipulate data and extract insights Social network analysis algorithms like PageRank and community detection How to translate graph structure to a ML model input with node embedding models Using graph features in node classification and link prediction workflows Graph Algorithms for Data Science is a hands-on guide to working with graph-based data in applications like machine learning, fraud detection, and business data analysis. It’s filled with fascinating and fun projects, demonstrating the ins-and-outs of graphs. You’ll gain practical skills by analyzing Twitter, building graphs with NLP techniques, and much more. Foreword by Michael Hunger. About the technology A graph, put simply, is a network of connected data. Graphs are an efficient way to identify and explore the significant relationships naturally occurring within a dataset. This book presents the most important algorithms for graph data science with examples from machine learning, business applications, natural language processing, and more. About the book Graph Algorithms for Data Science shows you how to construct and analyze graphs from structured and unstructured data. In it, you’ll learn to apply graph algorithms like PageRank, community detection/clustering, and knowledge graph models by putting each new algorithm to work in a hands-on data project. This cutting-edge book also demonstrates how you can create graphs that optimize input for AI models using node embedding. What's inside Creating knowledge graphs Node classification and link prediction workflows NLP techniques for graph construction About the reader For data scientists who know machine learning basics. Examples use the Cypher query language, which is explained in the book. About the author Tomaž Bratanic works at the intersection of graphs and machine learning. Arturo Geigel was the technical editor for this book. Table of Contents PART 1 INTRODUCTION TO GRAPHS 1 Graphs and network science: An introduction 2 Representing network structure: Designing your first graph model PART 2 SOCIAL NETWORK ANALYSIS 3 Your first steps with Cypher query language 4 Exploratory graph analysis 5 Introduction to social network analysis 6 Projecting monopartite networks 7 Inferring co-occurrence networks based on bipartite networks 8 Constructing a nearest neighbor similarity network PART 3 GRAPH MACHINE LEARNING 9 Node embeddings and classification 10 Link prediction 11 Knowledge graph completion 12 Constructing a graph using natural language processing technique

Distributed Algorithms

Download Distributed Algorithms PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262318954
Total Pages : 242 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Distributed Algorithms by : Wan Fokkink

Download or read book Distributed Algorithms written by Wan Fokkink and published by MIT Press. This book was released on 2013-12-06 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to distributed algorithms that emphasizes examples and exercises rather than mathematical argumentation. This book offers students and researchers a guide to distributed algorithms that emphasizes examples and exercises rather than the intricacies of mathematical models. It avoids mathematical argumentation, often a stumbling block for students, teaching algorithmic thought rather than proofs and logic. This approach allows the student to learn a large number of algorithms within a relatively short span of time. Algorithms are explained through brief, informal descriptions, illuminating examples, and practical exercises. The examples and exercises allow readers to understand algorithms intuitively and from different perspectives. Proof sketches, arguing the correctness of an algorithm or explaining the idea behind fundamental results, are also included. An appendix offers pseudocode descriptions of many algorithms. Distributed algorithms are performed by a collection of computers that send messages to each other or by multiple software threads that use the same shared memory. The algorithms presented in the book are for the most part “classics,” selected because they shed light on the algorithmic design of distributed systems or on key issues in distributed computing and concurrent programming. Distributed Algorithms can be used in courses for upper-level undergraduates or graduate students in computer science, or as a reference for researchers in the field.

Distributed Graph Analytics

Download Distributed Graph Analytics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030418863
Total Pages : 213 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Distributed Graph Analytics by : Unnikrishnan Cheramangalath

Download or read book Distributed Graph Analytics written by Unnikrishnan Cheramangalath and published by Springer Nature. This book was released on 2020-04-17 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together two important trends: graph algorithms and high-performance computing. Efficient and scalable execution of graph processing applications in data or network analysis requires innovations at multiple levels: algorithms, associated data structures, their implementation and tuning to a particular hardware. Further, programming languages and the associated compilers play a crucial role when it comes to automating efficient code generation for various architectures. This book discusses the essentials of all these aspects. The book is divided into three parts: programming, languages, and their compilation. The first part examines the manual parallelization of graph algorithms, revealing various parallelization patterns encountered, especially when dealing with graphs. The second part uses these patterns to provide language constructs that allow a graph algorithm to be specified. Programmers can work with these language constructs without worrying about their implementation, which is the focus of the third part. Implementation is handled by a compiler, which can specialize code generation for a backend device. The book also includes suggestive results on different platforms, which illustrate and justify the theory and practice covered. Together, the three parts provide the essential ingredients for creating a high-performance graph application. The book ends with a section on future directions, which offers several pointers to promising topics for future research. This book is intended for new researchers as well as graduate and advanced undergraduate students. Most of the chapters can be read independently by those familiar with the basics of parallel programming and graph algorithms. However, to make the material more accessible, the book includes a brief background on elementary graph algorithms, parallel computing and GPUs. Moreover it presents a case study using Falcon, a domain-specific language for graph algorithms, to illustrate the concepts.

Distributed Computing

Download Distributed Computing PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898719772
Total Pages : 359 pages
Book Rating : 4.7/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Distributed Computing by : David Peleg

Download or read book Distributed Computing written by David Peleg and published by SIAM. This book was released on 2000-01-01 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the locality-sensitive approach to distributed network algorithms-the utilization of locality to simplify control structures and algorithms and reduce their costs. The author begins with an introductory exposition of distributed network algorithms focusing on topics that illustrate the role of locality in distributed algorithmic techniques. He then introduces locality-preserving network representations and describes sequential and distributed techniques for their construction. Finally, the applicability of the locality-sensitive approach is demonstrated through several applications. Gives a thorough exposition of network spanners and other locality-preserving network representations such as sparse covers and partitions. The book is useful for computer scientists interested in distributed computing, electrical engineers interested in network architectures and protocols, and for discrete mathematicians and graph theorists.

The Boost Graph Library

Download The Boost Graph Library PDF Online Free

Author :
Publisher : Pearson Education
ISBN 13 : 0321601610
Total Pages : 465 pages
Book Rating : 4.3/5 (216 download)

DOWNLOAD NOW!


Book Synopsis The Boost Graph Library by : Jeremy G. Siek

Download or read book The Boost Graph Library written by Jeremy G. Siek and published by Pearson Education. This book was released on 2001-12-20 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Boost Graph Library (BGL) is the first C++ library to apply the principles of generic programming to the construction of the advanced data structures and algorithms used in graph computations. Problems in such diverse areas as Internet packet routing, molecular biology, scientific computing, and telephone network design can be solved by using graph theory. This book presents an in-depth description of the BGL and provides working examples designed to illustrate the application of BGL to these real-world problems. Written by the BGL developers, The Boost Graph Library: User Guide and Reference Manual gives you all the information you need to take advantage of this powerful new library. Part I is a complete user guide that begins by introducing graph concepts, terminology, and generic graph algorithms. This guide also takes the reader on a tour through the major features of the BGL; all motivated with example problems. Part II is a comprehensive reference manual that provides complete documentation of all BGL concepts, algorithms, and classes. Readers will find coverage of: Graph terminology and concepts Generic programming techniques in C++ Shortest-path algorithms for Internet routing Network planning problems using the minimum-spanning tree algorithms BGL algorithms with implicitly defined graphs BGL Interfaces to other graph libraries BGL concepts and algorithms BGL classes–graph, auxiliary, and adaptor Groundbreaking in its scope, this book offers the key to unlocking the power of the BGL for the C++ programmer looking to extend the reach of generic programming beyond the Standard Template Library.

Graph Mining

Download Graph Mining PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 160845116X
Total Pages : 209 pages
Book Rating : 4.6/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Graph Mining by : Deepayan Chakrabarti

Download or read book Graph Mining written by Deepayan Chakrabarti and published by Morgan & Claypool Publishers. This book was released on 2012-10-01 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions

Graphs, Networks and Algorithms

Download Graphs, Networks and Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662038226
Total Pages : 597 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Graphs, Networks and Algorithms by : Dieter Jungnickel

Download or read book Graphs, Networks and Algorithms written by Dieter Jungnickel and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised throughout Includes new chapters on the network simplex algorithm and a section on the five color theorem Recent developments are discussed

Graph Algorithms in the Language of Linear Algebra

Download Graph Algorithms in the Language of Linear Algebra PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898719918
Total Pages : 388 pages
Book Rating : 4.7/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Graph Algorithms in the Language of Linear Algebra by : Jeremy Kepner

Download or read book Graph Algorithms in the Language of Linear Algebra written by Jeremy Kepner and published by SIAM. This book was released on 2011-01-01 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.

Graph Algorithms

Download Graph Algorithms PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492047635
Total Pages : 297 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Graph Algorithms by : Mark Needham

Download or read book Graph Algorithms written by Mark Needham and published by "O'Reilly Media, Inc.". This book was released on 2019-05-16 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark