Dislocation-Density-Function Dynamics Simulation for Crystal Plasticity

Download Dislocation-Density-Function Dynamics Simulation for Crystal Plasticity PDF Online Free

Author :
Publisher :
ISBN 13 : 9781361035603
Total Pages : pages
Book Rating : 4.0/5 (356 download)

DOWNLOAD NOW!


Book Synopsis Dislocation-Density-Function Dynamics Simulation for Crystal Plasticity by : Hing-Shun Leung

Download or read book Dislocation-Density-Function Dynamics Simulation for Crystal Plasticity written by Hing-Shun Leung and published by . This book was released on 2017-01-26 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Dislocation-density-function Dynamics Simulation for Crystal Plasticity: a Full-dynamics, All-dislocation Approach" by Hing-shun, Leung, 梁慶淳, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Current strategies of computational crystal plasticity that focus on individual atoms or dislocations are impractical for real-scale, large-strain problems even with today''s computing power. Dislocation-density based approaches are a way forward but a critical issue to address is a realistic description of the interactions between dislocations. In this thesis, a new scheme for computational dynamics of dislocation-density functions is proposed, which takes full consideration of the mutual elastic interactions between dislocations based on the Hirth-Lothe formulation. Other features considered include (i) continuity nature of the movements of dislocation densities, (ii) forest hardening, (iii) generation according to high spatial gradients in dislocation densities, and (iv) annihilation. Numerical implementation by the finite-volume method, which is well suited for flow problems with high gradients, is discussed. Numerical examples performed for a single-crystal aluminium model show typical strength anisotropy behaviour comparable to experimental observations. Furthermore, this approach has been applied to three engineering problems and discussed in detail: (i) Application on small-scale crystal plasticity successfully captures a number of key experimental features, including power-law relation between strength and size, low dislocation storage and jerky deformation. (ii) Crystal softening and enhanced cell formation are predicted by applying oscillatory loads. The simulations reveal the main mechanism for subcell formation under oscillatory loadings to be the enhanced elimination of statistically stored dislocations by the oscillatory stress, leaving behind geometrically necessary dislocations with low Schmid factors which then form the subgrain walls. This is the first simulation effort to successfully predict the cell formation phenomenon under vibratory loadings. (iii) Tensile deformation of tri-crystals with grain size ranging from 200 to 500 can be divided into three stages. The results indicate different controlling mechanisms of the flow stress at different stages of deformation and grain sizes. Changing the middle grain tilt angle with respect to the outer grains is found to affect the stress-strain relationship and the distribution of plastic strain in the three grains. A refined meso-scale scheme based on the full dynamics of dislocation-density functions is also proposed aiming to bridge across the meso scale. In this scheme, the evolution of the dislocation-density functions is derived from a coarse-graining procedure which clearly defines the relationship between the discrete-line and density representations of the dislocation microstructure. Full dynamics of the dislocation-density functions are considered based on an "all-dislocation" concept in which statistically stored dislocations are preserved and treated in the same way as geometrically necessary dislocations. Elastic interactions between dislocations are treated in accordance with Mura''s formula for eigen-stress. Dislocation generation is considered as a consequence of dislocations to maintain their connectivity, and a special scheme is devised for this purpose. The model is applied to simulate a number of intensive microstructures involving discrete dislocation events, including loop expansion and shrinkage under applied and self-stress, dipole annihilation, and Orowan

DISLOCATION-DENSITY-FUNCTION D

Download DISLOCATION-DENSITY-FUNCTION D PDF Online Free

Author :
Publisher : Open Dissertation Press
ISBN 13 : 9781361035580
Total Pages : 198 pages
Book Rating : 4.0/5 (355 download)

DOWNLOAD NOW!


Book Synopsis DISLOCATION-DENSITY-FUNCTION D by : Hing-Shun Leung

Download or read book DISLOCATION-DENSITY-FUNCTION D written by Hing-Shun Leung and published by Open Dissertation Press. This book was released on 2017-01-26 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Dislocation-density-function Dynamics Simulation for Crystal Plasticity: a Full-dynamics, All-dislocation Approach" by Hing-shun, Leung, 梁慶淳, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Current strategies of computational crystal plasticity that focus on individual atoms or dislocations are impractical for real-scale, large-strain problems even with today's computing power. Dislocation-density based approaches are a way forward but a critical issue to address is a realistic description of the interactions between dislocations. In this thesis, a new scheme for computational dynamics of dislocation-density functions is proposed, which takes full consideration of the mutual elastic interactions between dislocations based on the Hirth-Lothe formulation. Other features considered include (i) continuity nature of the movements of dislocation densities, (ii) forest hardening, (iii) generation according to high spatial gradients in dislocation densities, and (iv) annihilation. Numerical implementation by the finite-volume method, which is well suited for flow problems with high gradients, is discussed. Numerical examples performed for a single-crystal aluminium model show typical strength anisotropy behaviour comparable to experimental observations. Furthermore, this approach has been applied to three engineering problems and discussed in detail: (i) Application on small-scale crystal plasticity successfully captures a number of key experimental features, including power-law relation between strength and size, low dislocation storage and jerky deformation. (ii) Crystal softening and enhanced cell formation are predicted by applying oscillatory loads. The simulations reveal the main mechanism for subcell formation under oscillatory loadings to be the enhanced elimination of statistically stored dislocations by the oscillatory stress, leaving behind geometrically necessary dislocations with low Schmid factors which then form the subgrain walls. This is the first simulation effort to successfully predict the cell formation phenomenon under vibratory loadings. (iii) Tensile deformation of tri-crystals with grain size ranging from 200 to 500 can be divided into three stages. The results indicate different controlling mechanisms of the flow stress at different stages of deformation and grain sizes. Changing the middle grain tilt angle with respect to the outer grains is found to affect the stress-strain relationship and the distribution of plastic strain in the three grains. A refined meso-scale scheme based on the full dynamics of dislocation-density functions is also proposed aiming to bridge across the meso scale. In this scheme, the evolution of the dislocation-density functions is derived from a coarse-graining procedure which clearly defines the relationship between the discrete-line and density representations of the dislocation microstructure. Full dynamics of the dislocation-density functions are considered based on an "all-dislocation" concept in which statistically stored dislocations are preserved and treated in the same way as geometrically necessary dislocations. Elastic interactions between dislocations are treated in accordance with Mura's formula for eigen-stress. Dislocation generation is considered as a consequence of dislocations to maintain their connectivity, and a special scheme is devised for this purpose. The model is applied to simulate a number of intensive microstructures involving discrete dislocation events, including loop expansion and shrinkage under applied and self-stress, dipole annihilation, and Orowan

Crystal Plasticity Finite Element Methods

Download Crystal Plasticity Finite Element Methods PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527642099
Total Pages : 188 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Crystal Plasticity Finite Element Methods by : Franz Roters

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Dislocation Dynamics and Plasticity

Download Dislocation Dynamics and Plasticity PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364275774X
Total Pages : 237 pages
Book Rating : 4.6/5 (427 download)

DOWNLOAD NOW!


Book Synopsis Dislocation Dynamics and Plasticity by : Taira Suzuki

Download or read book Dislocation Dynamics and Plasticity written by Taira Suzuki and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 1950s the direct observation of dislocations became possible, stimulat ing the interest of many research workers in the dynamics of dislocations. This led to major contributions to the understanding of the plasticity of various crys talline materials. During this time the study of metals and alloys of fcc and hcp structures developed remarkably. In particular, the discovery of the so-called in ertial effect caused by the electron and phonon frictional forces greatly influenced the quantitative understanding of the strength of these metallic materials. Statis tical studies of dislocations moving through random arrays of point obstacles played an important role in the above advances. These topics are described in Chaps. 2-4. Metals and alloys with bcc structure have large Peierls forces compared to those with fcc structure. The reasons for the delay in studying substances with bcc structure were mostly difficulties connected with the purification techniques and with microscopic studies of the dislocation core. In the 1970s, these difficulties were largely overcome by developments in experimental techniques and computer physics. Studies of dislocations in ionic and covalent bonding materials with large Peierls forces provided infonnation about the core structures of dislocations and their electronic interactions with charged particles. These are the main subjects in Chaps. 5-7.

Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics

Download Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3709102839
Total Pages : 401 pages
Book Rating : 4.7/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics by : Peter Gumbsch

Download or read book Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics written by Peter Gumbsch and published by Springer Science & Business Media. This book was released on 2011-01-30 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest state of simulation techniques to model plasticity and fracture in crystalline materials on the nano- and microscale is presented. Discrete dislocation mechanics and the neighbouring fields molecular dynamics and crystal plasticity are central parts. The physical phenomena, the theoretical basics, their mathematical description and the simulation techniques are introduced and important problems from the formation of dislocation structures to fatigue and fracture from the nano- to microscale as well as it’s impact on the macro behaviour are considered.

Statistical Analysis and Constitutive Modeling of Crystal Plasticity Using Dislocation Dynamics Simulation Database

Download Statistical Analysis and Constitutive Modeling of Crystal Plasticity Using Dislocation Dynamics Simulation Database PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (124 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis and Constitutive Modeling of Crystal Plasticity Using Dislocation Dynamics Simulation Database by : Shamseddin Akhondzadeh

Download or read book Statistical Analysis and Constitutive Modeling of Crystal Plasticity Using Dislocation Dynamics Simulation Database written by Shamseddin Akhondzadeh and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Most metals are crystalline materials that can undergo significant plastic (permanent) deformation when subjected to applied loading. Plastic deformation is usually accompanied by an increase in the flow stress of the material. This phenomenon is called strain hardening and is of vital importance in many engineering applications, including aerospace, automotive, and power generation industries. Developing accurate material models to predict the plastic response and hardening behavior of metals during deformation is a prerequisite to the engineering design processes, which requires a physical understanding of the underlying deformation mechanisms. In single crystals, plastic deformation of the crystal is governed by the evolution of dislocations--line defects inside the crystalline materials which marks the boundary between the slipped and unslipped regions--moving and interacting in response to the applied loading. Dislocation dynamics (DD) simulations, which track the time-space trajectories of individual dislocation lines, provide a promising tool to establish a physical link between the dislocation microstructure evolution and the strain hardening phenomenon. However, the high computational cost of DD simulations renders the accessible length and time scales to well below those which are relevant to most engineering applications. Due to this challenge, instead of directly using DD simulations for engineering applications, we have utilized DD simulations to delineate how constitutive relations of crystal plasticity (CP) can be constructed for FCC copper, based on coarse-graining of high-throughput DD simulations. This thesis consists of three main components, and we show how they fit together into a complete, physical model like three pieces of a puzzle. The first piece is a massive DD simulation database that we were able to generate thanks to recent computational advances in DD, including the subcycling time-integration algorithm and its implementation on Graphics Processing Units (GPUs). By systematically coarse-graining the database we present a strain hardening model which consists of two components: 1) a dislocation multiplication model, which accounts for slip-free multiplication, and 2) an exponential flow-rule connecting slip system shear rate to the resolved shear stress through an exponential function. These components can be thought of as the second and third puzzle pieces. By analyzing the data, it was discovered that dislocation multiplication frequently occurs on slip systems which experience zero applied shear stress (i.e., zero Schmid factor) and have a plastic strain rate of zero; we termed such multiplication slip-free multiplication and it serves as the second puzzle piece. This finding questions the assumption of the existing phenomenological expression that multiplication is proportional to the shear rate. We propose to add a correction term to the generalized Kocks-Mecking expression to account for slip-free multiplication, whose mechanistic explanation is provided. A major finding of this thesis is that DD results suggest an exponential flow-rule, in contrast to the commonly used power-law flow-rule, even in the cases where thermal fluctuations are not present. The exponential flow-rule is the third piece in the puzzle of the presented strain hardening model. We demonstrate that the observed exponential flow-rule, despite the common notion that thermal fluctuations are the responsible mechanism, can be explained by statistical properties of the dislocation links. Hence, by statistically analyzing the number density and plastic activity of links in terms of their length, we formulate a physically justified link length based flow rule which can numerically capture the exponential dependence of shear rate on shear stress. The proposed link length based flow-rule has two key components: 1) the number density of links on each slip system, which was observed to follow the sum of two exponentials distribution, and 2) an average velocity of links as a function of resolved shear stress and link length, whose fitting coefficients are independent of the loading orientation. The exponential dependence of on resolved shear stress is traced to the spatial fluctuation of the internal stress field, which can be approximated by a Laplace distribution. The proposed average velocity function incorporates the Laplace distribution in its form. This thesis shows that discrete dislocation dynamics simulations can be used to inform higher length scale models of non-phenomenological constitutive relations. The presented model captures the strain hardening as a result of slip system interactions in FCC single crystals. It works as an example for developing similar coarse-grained models based on DDD which includes additional strain hardening mechanisms such as cross-slip, or precipitate hardening. We hope that the present thesis motivates more researchers to use DDD simulations for constructing constitutive relations.

Single-crystal Gradient Plasticity with an Accumulated Plastic Slip: Theory and Applications

Download Single-crystal Gradient Plasticity with an Accumulated Plastic Slip: Theory and Applications PDF Online Free

Author :
Publisher : KIT Scientific Publishing
ISBN 13 : 3731506068
Total Pages : 278 pages
Book Rating : 4.7/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Single-crystal Gradient Plasticity with an Accumulated Plastic Slip: Theory and Applications by : Eric Bayerschen

Download or read book Single-crystal Gradient Plasticity with an Accumulated Plastic Slip: Theory and Applications written by Eric Bayerschen and published by KIT Scientific Publishing. This book was released on 2016 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: In experiments on metallic microwires, size effects occur as a result of the interaction of dislocations with, e.g., grain boundaries. In continuum theories this behavior can be approximated using gradient plasticity. A numerically efficient geometrically linear gradient plasticity theory is developed considering the grain boundaries and implemented with finite elements. Simulations are performed for several metals in comparison to experiments and discrete dislocation dynamics simulations.

Comparison of Dislocation Density Tensor Fields Derived from Discrete Dislocation Dynamics and Crystal Plasticity Simulations of Torsion

Download Comparison of Dislocation Density Tensor Fields Derived from Discrete Dislocation Dynamics and Crystal Plasticity Simulations of Torsion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 16 pages
Book Rating : 4.:/5 (971 download)

DOWNLOAD NOW!


Book Synopsis Comparison of Dislocation Density Tensor Fields Derived from Discrete Dislocation Dynamics and Crystal Plasticity Simulations of Torsion by :

Download or read book Comparison of Dislocation Density Tensor Fields Derived from Discrete Dislocation Dynamics and Crystal Plasticity Simulations of Torsion written by and published by . This book was released on 2016 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CP models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.

Dislocation Mechanism-Based Crystal Plasticity

Download Dislocation Mechanism-Based Crystal Plasticity PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128145927
Total Pages : 450 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Dislocation Mechanism-Based Crystal Plasticity by : Zhuo Zhuang

Download or read book Dislocation Mechanism-Based Crystal Plasticity written by Zhuo Zhuang and published by Academic Press. This book was released on 2019-04-12 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale Presents crystal plasticity theory without size effect Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale

Dislocation Dynamics

Download Dislocation Dynamics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 806 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Dislocation Dynamics by : Alan R. Rosenfield

Download or read book Dislocation Dynamics written by Alan R. Rosenfield and published by . This book was released on 1968 with total page 806 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Crystal Plasticity

Download Crystal Plasticity PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3036508384
Total Pages : 438 pages
Book Rating : 4.0/5 (365 download)

DOWNLOAD NOW!


Book Synopsis Crystal Plasticity by : Wojciech Polkowski

Download or read book Crystal Plasticity written by Wojciech Polkowski and published by MDPI. This book was released on 2021-04-27 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a collection of 25 original papers (including one review paper) on state-of-the art achievements in the theory and practice of crystals plasticity. The articles cover a wide scope of research on materials behavior subjected to external loadings, starting from atomic-scale simulations, and a new methodological aspect, to experiments on a structure and mechanical response upon a large-scale processing. Thus, a presented contribution of researchers from 18 different countries can be virtually divided into three groups, namely (i) “modelling and simulation”; (ii) “methodological aspects”; and (iii) “experiments on process/structure/properties relationship”. Furthermore, a large variety of materials are investigated including more conventional (steels, copper, titanium, nickel, aluminum, and magnesium alloys) and advanced ones (composites or high entropy alloys). The book should be interested for senior students, researchers and engineers working within discipline of materials science and solid state physics of crystalline materials.

Single Crystal Plasticity by Modeling Dislocation Density Rate Behavior

Download Single Crystal Plasticity by Modeling Dislocation Density Rate Behavior PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Single Crystal Plasticity by Modeling Dislocation Density Rate Behavior by :

Download or read book Single Crystal Plasticity by Modeling Dislocation Density Rate Behavior written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 104 s−1. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

The Selected Works of John W. Cahn

Download The Selected Works of John W. Cahn PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118788206
Total Pages : 830 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis The Selected Works of John W. Cahn by : W. Craig Carter

Download or read book The Selected Works of John W. Cahn written by W. Craig Carter and published by John Wiley & Sons. This book was released on 2013-10-28 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents a collection of 30 selected papers from the work of John W. Cahn. Dr. Cahn is Senior Fellow at the Materials Science and Engineering Laboratory of the National Institute of Standards and Technology, and is widely recognized as a founder of modern theory and thought in materials science. The range of his research included kinetics and mechanisms of metallurgical phase changes, surfaces, interfaces, defects, quasicrystals, thermodynamics, and other areas impacting the fundamental understanding of materials science. Each paper includes a 2-4 page review of the impact and historical perspective of the work. This is an important collection for students, instructors, and scientists interested in materials science.

The Plasticity of Metals at the Sub-micrometer Scale and Dislocation Dynamics in a Thin Film

Download The Plasticity of Metals at the Sub-micrometer Scale and Dislocation Dynamics in a Thin Film PDF Online Free

Author :
Publisher : Stanford University
ISBN 13 :
Total Pages : 186 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis The Plasticity of Metals at the Sub-micrometer Scale and Dislocation Dynamics in a Thin Film by : Seok Woo Lee

Download or read book The Plasticity of Metals at the Sub-micrometer Scale and Dislocation Dynamics in a Thin Film written by Seok Woo Lee and published by Stanford University. This book was released on 2011 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology has played a significant role in the development of useful engineering devices and in the synthesis of new classes of materials. For the reliable design of devices and for structural applications of materials with micro- or nano-sized features, nanotechnology has always called for an understanding of the mechanical properties of materials at small length scales. Thus, it becomes important to develop new experimental techniques to allow reliable mechanical testing at small scales. At the same time, the development of computational techniques is necessary to interpret the experimentally observed phenomena. Currently, microcompression testing of micropillars, which are fabricated by focused-ion beam (FIB) milling, is one of the most popular experimental methods for measuring the mechanical properties at the micrometer scale. Also, dislocation dynamics codes have been extensively developed to study the local evolution of dislocation structures. Therefore, we conducted both experimental and theoretical studies that shed new light on the factors that control the strength and plasticity of crystalline materials at the sub-micrometer scale. In the experimental work, we produced gold nanopillars by focused-ion beam milling, and conducted microcompression tests to obtain the stress-strain curves. Firstly, the size effects on the strength of gold nanopillars were studied, and "Smaller is Stronger" was observed. Secondly, we tried to change the dislocation densities to control the strength of gold nanopillars by prestraining and annealing. The results showed that prestraining dramatically reduces the flow strength of nanopillars while annealing restores the strength to the pristine levels. Transmission electron microscopy (TEM) revealed that the high dislocation density (~1015 m-2) of prestrained nanopillars significantly decreased after heavy plastic deformation. In order to interpret this TEM observation, potential dislocation source structures were geometrically analyzed. We found that the insertion of jogged dislocations before relaxation or enabling cross-slip during plastic flow are prerequisites for the formation of potentially strong natural pinning points and single arm dislocation sources. At the sub-micron scale, these conditions are most likely absent, and we argue that mobile dislocation starvation would occur naturally in the course of plastic flow. Two more outstanding issues have also been studied in this dissertation. The first involves the effects of FIB milling on the mechanical properties. Since micropillars are made by FIB milling, the damage layer at the free surface is always formed and would be expected to affect the mechanical properties at a sub-micron scale. Thus, pristine gold microparticles were produced by a solid-state dewetting technique, and the effects of FIB milling on both pristine and prestrained microparticles were examined via microcompression testing. These experiments revealed that FIB milling significantly reduces the strength of pristine microparticles, but does not alter that of prestrained microparticles. Thus, we confirmed that if there are pre-existing mobile-dislocations present in the crystal, FIB milling does not affect the mechanical properties. The second issue is the scaling law commonly used to describe the strength of micropillars as a function of sample size. For the scaling law, the power-law approximation has been widely used without understanding fundamental physics in it. Thus, we tried to analyze the power-law approximation in a quantitative manner with the well-known single arm source model. Material parameters, such as the friction stress, the anisotropic shear modulus, the magnitude of Burgers vector and the dislocation density, were explored to understand their effects on the scaling behavior. Considering these effects allows one to rationalize the observed material-dependent power-law exponents quantitatively. In another part of the dissertation, a computational study of dislocation dynamics in a free-standing thin film is described. We improved the ParaDiS (Parallel Dislocation Simulator) code, which was originally developed at the Lawrence Livermore National Laboratory, to deal with the free surface of a free-standing thin film. The spectral method was implemented to calculate the image stress field in a thin film. The faster convergence in the image stress calculation were obtained by employing Yoffe's image stress, which removes the singularity of the traction at the intersecting point between a threading dislocation and free surface. Using this newly developed code, we studied the stability of dislocation junctions and jogs, which are the potential dislocation sources, in a free standing thin film of a face-centered-cubic metal and discussed the creation of a dislocation source in a thin film. In summary, we have performed both microcompression tests and dislocation dynamics simulations to understand the dislocation mechanisms at the sub-micron scale and the related mechanical properties of metals. We believe that these experimental and computational studies have contributed to the enhancement of our fundamental knowledge of the plasticity of metals at the sub-micron scale.

Computer Simulations of Crystal Plasticity at Different Length Scales

Download Computer Simulations of Crystal Plasticity at Different Length Scales PDF Online Free

Author :
Publisher :
ISBN 13 : 9781361348031
Total Pages : pages
Book Rating : 4.3/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Computer Simulations of Crystal Plasticity at Different Length Scales by : Bingqing Cheng

Download or read book Computer Simulations of Crystal Plasticity at Different Length Scales written by Bingqing Cheng and published by . This book was released on 2017-01-27 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Computer Simulations of Crystal Plasticity at Different Length Scales" by Bingqing, Cheng, 程冰清, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Crystal plasticity has been an active research field for several decades. The crystal plasticity of the bulk materials has its key relevance in the industrial process. Besides, the plasticity of nano-sized materials becomes a topic attracting a lot of interest recently. In the Part I of the thesis, molecular dynamics (MD) simulations were used to study the plasticity of small nanoparticles. Firstly, the coalescence process of Cu nanoparticles was explored. It was found that a peculiar type of five-fold twins in the sintered products were formed via an unseen before dislocation-free process involving a series of shear waves and rigid-body rotations. Secondly, a similar study on the heating of a single nanoparticle was conducted. The same dislocation-free shear wave mechanism was spotted again. In this mechanism, a cluster of atoms rearranges in a highly coordinated way between different geometrical configurations (e.g. fcc, decahedral, icosahedral) without involving dislocations. Thirdly, simulations on the sintering of many nanoparticles were performed, and the governing processes during the consolidation were discussed. The findings in this part of the thesis can provide some guidance for controlling the motifs of nanoparticles. In Part II of the thesis, the emphasis was switched to the crystal plasticity at larger spatial and temporal scales. A dislocation density-based model was developed in our research group. This model employs a dynamics formulation in which the force on each group of dislocation density is calculated with the Taylor and mutual elastic interactions taken into account. The motion of the dislocation densities is then predicted using a conservative law, with annihilation and generation considered. The new dislocation density-based model was used in this work to simulate the plastic deformation of single crystals under ultrasonic irradiation. Softening during vibrations as well as enhanced cell formation was predicted. This is the first simulation effort to successfully predict the cell formation phenomenon under vibratory loadings. DOI: 10.5353/th_b5317059 Subjects: Crystals - Plastic properties - Computer simulation

Handbook of Mechanics of Materials

Download Handbook of Mechanics of Materials PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9789811068836
Total Pages : 0 pages
Book Rating : 4.0/5 (688 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mechanics of Materials by : Siegfried Schmauder

Download or read book Handbook of Mechanics of Materials written by Siegfried Schmauder and published by Springer. This book was released on 2019-05-09 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive reference for the studies of mechanical properties of materials over multiple length and time scales. The topics include nanomechanics, micromechanics, continuum mechanics, mechanical property measurements, and materials design. The handbook employs a consistent and systematic approach offering readers a user friendly reference ideal for frequent consultation. It is appropriate for an audience at of graduate students, faculties, researchers, and professionals in the fields of Materials Science, Mechanical Engineering, Civil Engineering, Engineering Mechanics, and Aerospace Engineering.

Large Scale DD Simulation Results for Crystal Plasticity Parameters in Fe-Cr and Fe-Ni Systems

Download Large Scale DD Simulation Results for Crystal Plasticity Parameters in Fe-Cr and Fe-Ni Systems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Large Scale DD Simulation Results for Crystal Plasticity Parameters in Fe-Cr and Fe-Ni Systems by :

Download or read book Large Scale DD Simulation Results for Crystal Plasticity Parameters in Fe-Cr and Fe-Ni Systems written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: