Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Discrete Time Stochastic Systems
Download Discrete Time Stochastic Systems full books in PDF, epub, and Kindle. Read online Discrete Time Stochastic Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author :Torsten Söderström Publisher :Springer Science & Business Media ISBN 13 :9781852336493 Total Pages :410 pages Book Rating :4.3/5 (364 download)
Book Synopsis Discrete-time Stochastic Systems by : Torsten Söderström
Download or read book Discrete-time Stochastic Systems written by Torsten Söderström and published by Springer Science & Business Media. This book was released on 2002-07-26 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive introduction to the estimation and control of dynamic stochastic systems provides complete derivations of key results. The second edition includes improved and updated material, and a new presentation of polynomial control and new derivation of linear-quadratic-Gaussian control.
Book Synopsis Control and System Theory of Discrete-Time Stochastic Systems by : Jan H. van Schuppen
Download or read book Control and System Theory of Discrete-Time Stochastic Systems written by Jan H. van Schuppen and published by Springer Nature. This book was released on 2021-08-02 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book helps students, researchers, and practicing engineers to understand the theoretical framework of control and system theory for discrete-time stochastic systems so that they can then apply its principles to their own stochastic control systems and to the solution of control, filtering, and realization problems for such systems. Applications of the theory in the book include the control of ships, shock absorbers, traffic and communications networks, and power systems with fluctuating power flows. The focus of the book is a stochastic control system defined for a spectrum of probability distributions including Bernoulli, finite, Poisson, beta, gamma, and Gaussian distributions. The concepts of observability and controllability of a stochastic control system are defined and characterized. Each output process considered is, with respect to conditions, represented by a stochastic system called a stochastic realization. The existence of a control law is related to stochastic controllability while the existence of a filter system is related to stochastic observability. Stochastic control with partial observations is based on the existence of a stochastic realization of the filtration of the observed process.
Book Synopsis Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems by : Vasile Dragan
Download or read book Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems written by Vasile Dragan and published by Springer Science & Business Media. This book was released on 2009-11-10 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph the authors develop a theory for the robust control of discrete-time stochastic systems, subjected to both independent random perturbations and to Markov chains. Such systems are widely used to provide mathematical models for real processes in fields such as aerospace engineering, communications, manufacturing, finance and economy. The theory is a continuation of the authors’ work presented in their previous book entitled "Mathematical Methods in Robust Control of Linear Stochastic Systems" published by Springer in 2006. Key features: - Provides a common unifying framework for discrete-time stochastic systems corrupted with both independent random perturbations and with Markovian jumps which are usually treated separately in the control literature; - Covers preliminary material on probability theory, independent random variables, conditional expectation and Markov chains; - Proposes new numerical algorithms to solve coupled matrix algebraic Riccati equations; - Leads the reader in a natural way to the original results through a systematic presentation; - Presents new theoretical results with detailed numerical examples. The monograph is geared to researchers and graduate students in advanced control engineering, applied mathematics, mathematical systems theory and finance. It is also accessible to undergraduate students with a fundamental knowledge in the theory of stochastic systems.
Book Synopsis Discrete Stochastic Processes by : Robert G. Gallager
Download or read book Discrete Stochastic Processes written by Robert G. Gallager and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are found in probabilistic systems that evolve with time. Discrete stochastic processes change by only integer time steps (for some time scale), or are characterized by discrete occurrences at arbitrary times. Discrete Stochastic Processes helps the reader develop the understanding and intuition necessary to apply stochastic process theory in engineering, science and operations research. The book approaches the subject via many simple examples which build insight into the structure of stochastic processes and the general effect of these phenomena in real systems. The book presents mathematical ideas without recourse to measure theory, using only minimal mathematical analysis. In the proofs and explanations, clarity is favored over formal rigor, and simplicity over generality. Numerous examples are given to show how results fail to hold when all the conditions are not satisfied. Audience: An excellent textbook for a graduate level course in engineering and operations research. Also an invaluable reference for all those requiring a deeper understanding of the subject.
Download or read book Stochastic Systems written by P. R. Kumar and published by SIAM. This book was released on 2015-12-15 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.
Book Synopsis Discrete-Time Markov Jump Linear Systems by : O.L.V. Costa
Download or read book Discrete-Time Markov Jump Linear Systems written by O.L.V. Costa and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This will be the most up-to-date book in the area (the closest competition was published in 1990) This book takes a new slant and is in discrete rather than continuous time
Book Synopsis Discrete-time Stochastic Systems by : Torsten Söderström
Download or read book Discrete-time Stochastic Systems written by Torsten Söderström and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive introduction to the estimation and control of dynamic stochastic systems provides complete derivations of key results. The second edition includes improved and updated material, and a new presentation of polynomial control and new derivation of linear-quadratic-Gaussian control.
Book Synopsis Stochastic Discrete Event Systems by : Armin Zimmermann
Download or read book Stochastic Discrete Event Systems written by Armin Zimmermann and published by Springer Science & Business Media. This book was released on 2008-01-12 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic discrete-event systems (SDES) capture the randomness in choices due to activity delays and the probabilities of decisions. This book delivers a comprehensive overview on modeling with a quantitative evaluation of SDES. It presents an abstract model class for SDES as a pivotal unifying result and details important model classes. The book also includes nontrivial examples to explain real-world applications of SDES.
Book Synopsis Stochastic Control in Discrete and Continuous Time by : Atle Seierstad
Download or read book Stochastic Control in Discrete and Continuous Time written by Atle Seierstad and published by Springer Science & Business Media. This book was released on 2008-11-11 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an introduction to three topics in stochastic control: discrete time stochastic control, i. e. , stochastic dynamic programming (Chapter 1), piecewise - terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4). The chapters include treatments of optimal stopping problems. An Appendix - calls material from elementary probability theory and gives heuristic explanations of certain more advanced tools in probability theory. The book will hopefully be of interest to students in several ?elds: economics, engineering, operations research, ?nance, business, mathematics. In economics and business administration, graduate students should readily be able to read it, and the mathematical level can be suitable for advanced undergraduates in mathem- ics and science. The prerequisites for reading the book are only a calculus course and a course in elementary probability. (Certain technical comments may demand a slightly better background. ) As this book perhaps (and hopefully) will be read by readers with widely diff- ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs, comments, or remarks contain material of a seemingly more technical nature that you don’t understand. Just skip such material and continue reading, it will surely not be needed in order to understand the main ideas and results. The presentation avoids the use of measure theory.
Book Synopsis Linear Stochastic Systems by : Peter E. Caines
Download or read book Linear Stochastic Systems written by Peter E. Caines and published by SIAM. This book was released on 2018-06-12 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Stochastic Systems, originally published in 1988, is today as comprehensive a reference to the theory of linear discrete-time-parameter systems as ever. Its most outstanding feature is the unified presentation, including both input-output and state space representations of stochastic linear systems, together with their interrelationships. The author first covers the foundations of linear stochastic systems and then continues through to more sophisticated topics including the fundamentals of stochastic processes and the construction of stochastic systems; an integrated exposition of the theories of prediction, realization (modeling), parameter estimation, and control; and a presentation of stochastic adaptive control theory. Written in a clear, concise manner and accessible to graduate students, researchers, and teachers, this classic volume also includes background material to make it self-contained and has complete proofs for all the principal results of the book. Furthermore, this edition includes many corrections of errata collected over the years.
Book Synopsis Linear Stochastic Control Systems by : Goong Chen
Download or read book Linear Stochastic Control Systems written by Goong Chen and published by CRC Press. This book was released on 1995-07-12 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Stochastic Control Systems presents a thorough description of the mathematical theory and fundamental principles of linear stochastic control systems. Both continuous-time and discrete-time systems are thoroughly covered. Reviews of the modern probability and random processes theories and the Itô stochastic differential equations are provided. Discrete-time stochastic systems theory, optimal estimation and Kalman filtering, and optimal stochastic control theory are studied in detail. A modern treatment of these same topics for continuous-time stochastic control systems is included. The text is written in an easy-to-understand style, and the reader needs only to have a background of elementary real analysis and linear deterministic systems theory to comprehend the subject matter. This graduate textbook is also suitable for self-study, professional training, and as a handy research reference. Linear Stochastic Control Systems is self-contained and provides a step-by-step development of the theory, with many illustrative examples, exercises, and engineering applications.
Book Synopsis Optimal Control of Discrete Time Stochastic Systems by : C. Striebel
Download or read book Optimal Control of Discrete Time Stochastic Systems written by C. Striebel and published by Springer. This book was released on 1975-07-30 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction and formulation of the model; Estimation; Statistics sufficient for control; General theory of optimality; Selection classes; Quadratic loss; An absolute value loss function.
Book Synopsis Optimization of Stochastic Systems by : Masanao Aoki
Download or read book Optimization of Stochastic Systems written by Masanao Aoki and published by Academic Press. This book was released on 1967-01-01 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization of Stochastic Systems is an outgrowth of class notes of a graduate level seminar on optimization of stochastic systems. Most of the material in the book was taught for the first time during the 1965 Spring Semester while the author was visiting the Department of Electrical Engineering, University of California, Berkeley. The revised and expanded material was presented at the Department of Engineering, University of California, Los Angeles during the 1965 Fall Semester. The systems discussed in the book are mostly assumed to be of discrete-time type with continuous state variables taking values in some subsets of Euclidean spaces. There is another class of systems in which state variables are assumed to take on at most a denumerable number of values, i.e., these systems are of discrete-time discrete-space type. Although the problems associated with the latter class of systems are many and interesting, andalthough they are amenable to deep analysis on such topics as the limiting behaviors of state variables as time indexes increase to infinity, this class of systems is not included here, partly because there are many excellent books on the subjects and partly because inclusion of these materials would easily double the size of the book.
Book Synopsis Introduction to Modeling and Analysis of Stochastic Systems by : V. G. Kulkarni
Download or read book Introduction to Modeling and Analysis of Stochastic Systems written by V. G. Kulkarni and published by Springer. This book was released on 2012-12-27 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.
Book Synopsis Stochastic Hybrid Systems by : Christos G. Cassandras
Download or read book Stochastic Hybrid Systems written by Christos G. Cassandras and published by CRC Press. This book was released on 2018-10-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because they incorporate both time- and event-driven dynamics, stochastic hybrid systems (SHS) have become ubiquitous in a variety of fields, from mathematical finance to biological processes to communication networks to engineering. Comprehensively integrating numerous cutting-edge studies, Stochastic Hybrid Systems presents a captivating treatment of some of the most ambitious types of dynamic systems. Cohesively edited by leading experts in the field, the book introduces the theoretical basics, computational methods, and applications of SHS. It first discusses the underlying principles behind SHS and the main design limitations of SHS. Building on these fundamentals, the authoritative contributors present methods for computer calculations that apply SHS analysis and synthesis techniques in practice. The book concludes with examples of systems encountered in a wide range of application areas, including molecular biology, communication networks, and air traffic management. It also explains how to resolve practical problems associated with these systems. Stochastic Hybrid Systems achieves an ideal balance between a theoretical treatment of SHS and practical considerations. The book skillfully explores the interaction of physical processes with computerized equipment in an uncertain environment, enabling a better understanding of sophisticated as well as everyday devices and processes.
Book Synopsis Stochastic Optimal Control by : Dimitri P. Bertsekas
Download or read book Stochastic Optimal Control written by Dimitri P. Bertsekas and published by . This book was released on 1961 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Discrete-Time Markov Chains by : George Yin
Download or read book Discrete-Time Markov Chains written by George Yin and published by Springer Science & Business Media. This book was released on 2005 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on discrete-time-scale Markov chains, the contents of this book are an outgrowth of some of the authors' recent research. The motivation stems from existing and emerging applications in optimization and control of complex hybrid Markovian systems in manufacturing, wireless communication, and financial engineering. Much effort in this book is devoted to designing system models arising from these applications, analyzing them via analytic and probabilistic techniques, and developing feasible computational algorithms so as to reduce the inherent complexity. This book presents results including asymptotic expansions of probability vectors, structural properties of occupation measures, exponential bounds, aggregation and decomposition and associated limit processes, and interface of discrete-time and continuous-time systems. One of the salient features is that it contains a diverse range of applications on filtering, estimation, control, optimization, and Markov decision processes, and financial engineering. This book will be an important reference for researchers in the areas of applied probability, control theory, operations research, as well as for practitioners who use optimization techniques. Part of the book can also be used in a graduate course of applied probability, stochastic processes, and applications.