Discrete Painlevé Equations

Download Discrete Painlevé Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470450380
Total Pages : 154 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Discrete Painlevé Equations by : Nalini Joshi

Download or read book Discrete Painlevé Equations written by Nalini Joshi and published by American Mathematical Soc.. This book was released on 2019-05-30 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete Painlevé equations are nonlinear difference equations, which arise from translations on crystallographic lattices. The deceptive simplicity of this statement hides immensely rich mathematical properties, connecting dynamical systems, algebraic geometry, Coxeter groups, topology, special functions theory, and mathematical physics. This book necessarily starts with introductory material to give the reader an accessible entry point to this vast subject matter. It is based on lectures that the author presented as principal lecturer at a Conference Board of Mathematical Sciences and National Science Foundation conference in Texas in 2016. Instead of technical theorems or complete proofs, the book relies on providing essential points of many arguments through explicit examples, with the hope that they will be useful for applied mathematicians and physicists.

Discrete Painlevé Equations

Download Discrete Painlevé Equations PDF Online Free

Author :
Publisher :
ISBN 13 : 9781470452353
Total Pages : 154 pages
Book Rating : 4.4/5 (523 download)

DOWNLOAD NOW!


Book Synopsis Discrete Painlevé Equations by : Nalini Joshi

Download or read book Discrete Painlevé Equations written by Nalini Joshi and published by . This book was released on 2019 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete Painlevé equations are nonlinear difference equations, which arise from translations on crystallographic lattices. The deceptive simplicity of this statement hides immensely rich mathematical properties, connecting dynamical systems, algebraic geometry, Coxeter groups, topology, special functions theory, and mathematical physics. This book necessarily starts with introductory material to give the reader an accessible entry point to this vast subject matter. It is based on lectures that the author presented as principal lecturer at a Conference Board of Mathematical Sciences and Nation.

Discrete Integrable Systems

Download Discrete Integrable Systems PDF Online Free

Author :
Publisher :
ISBN 13 : 9783662144602
Total Pages : 460 pages
Book Rating : 4.1/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Discrete Integrable Systems by : Basil Grammaticos

Download or read book Discrete Integrable Systems written by Basil Grammaticos and published by . This book was released on 2014-01-15 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Painlevé Differential Equations in the Complex Plane

Download Painlevé Differential Equations in the Complex Plane PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110198096
Total Pages : 313 pages
Book Rating : 4.1/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Painlevé Differential Equations in the Complex Plane by : Valerii I. Gromak

Download or read book Painlevé Differential Equations in the Complex Plane written by Valerii I. Gromak and published by Walter de Gruyter. This book was released on 2008-08-22 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first comprehensive treatment of Painlevé differential equations in the complex plane. Starting with a rigorous presentation for the meromorphic nature of their solutions, the Nevanlinna theory will be applied to offer a detailed exposition of growth aspects and value distribution of Painlevé transcendents. The subsequent main part of the book is devoted to topics of classical background such as representations and expansions of solutions, solutions of special type like rational and special transcendental solutions, Bäcklund transformations and higher order analogues, treated separately for each of these six equations. The final chapter offers a short overview of applications of Painlevé equations, including an introduction to their discrete counterparts. Due to the present important role of Painlevé equations in physical applications, this monograph should be of interest to researchers in both mathematics and physics and to graduate students interested in mathematical physics and the theory of differential equations.

The Isomonodromic Deformation Method in the Theory of Painleve Equations

Download The Isomonodromic Deformation Method in the Theory of Painleve Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540398236
Total Pages : 318 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis The Isomonodromic Deformation Method in the Theory of Painleve Equations by : Alexander R. Its

Download or read book The Isomonodromic Deformation Method in the Theory of Painleve Equations written by Alexander R. Its and published by Springer. This book was released on 2006-11-14 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Orthogonal Polynomials and Painlevé Equations

Download Orthogonal Polynomials and Painlevé Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108441947
Total Pages : 192 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Orthogonal Polynomials and Painlevé Equations by : Walter Van Assche

Download or read book Orthogonal Polynomials and Painlevé Equations written by Walter Van Assche and published by Cambridge University Press. This book was released on 2018 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are a number of intriguing connections between Painlev equations and orthogonal polynomials, and this book is one of the first to provide an introduction to these. Researchers in integrable systems and non-linear equations will find the many explicit examples where Painlev equations appear in mathematical analysis very useful. Those interested in the asymptotic behavior of orthogonal polynomials will also find the description of Painlev transcendants and their use for local analysis near certain critical points helpful to their work. Rational solutions and special function solutions of Painlev equations are worked out in detail, with a survey of recent results and an outline of their close relationship with orthogonal polynomials. Exercises throughout the book help the reader to get to grips with the material. The author is a leading authority on orthogonal polynomials, giving this work a unique perspective on Painlev equations.

Painleve Transcendents

Download Painleve Transcendents PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082183651X
Total Pages : 570 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Painleve Transcendents by : A. S. Fokas

Download or read book Painleve Transcendents written by A. S. Fokas and published by American Mathematical Soc.. This book was released on 2006 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtainedanswering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutionsof the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points, play a crucial role in the applications of these functions. It is shown in this book, that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called theRiemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these ``nonlinear special functions''. The book describes in detail theRiemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas.

The Painlevé Property

Download The Painlevé Property PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461215323
Total Pages : 828 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis The Painlevé Property by : Robert Conte

Download or read book The Painlevé Property written by Robert Conte and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject this volume is explicit integration, that is, the analytical as opposed to the numerical solution, of all kinds of nonlinear differential equations (ordinary differential, partial differential, finite difference). Such equations describe many physical phenomena, their analytic solutions (particular solutions, first integral, and so forth) are in many cases preferable to numerical computation, which may be long, costly and, worst, subject to numerical errors. In addition, the analytic approach can provide a global knowledge of the solution, while the numerical approach is always local. Explicit integration is based on the powerful methods based on an in-depth study of singularities, that were first used by Poincar and subsequently developed by Painlev in his famous Leons de Stockholm of 1895. The recent interest in the subject and in the equations investigated by Painlev dates back about thirty years ago, arising from three, apparently disjoint, fields: the Ising model of statistical physics and field theory, propagation of solitons, and dynamical systems. The chapters in this volume, based on courses given at Cargse 1998, alternate mathematics and physics; they are intended to bring researchers entering the field to the level of present research.

Discrete Systems and Integrability

Download Discrete Systems and Integrability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107042720
Total Pages : 461 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Discrete Systems and Integrability by : J. Hietarinta

Download or read book Discrete Systems and Integrability written by J. Hietarinta and published by Cambridge University Press. This book was released on 2016-09 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: A first introduction to the theory of discrete integrable systems at a level suitable for students and non-experts.

Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra

Download Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810228910
Total Pages : 380 pages
Book Rating : 4.2/5 (289 download)

DOWNLOAD NOW!


Book Synopsis Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra by : W.-H. Steeb

Download or read book Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra written by W.-H. Steeb and published by World Scientific. This book was released on 1996 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive introduction to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. It is suitable for students and research workers whose main interest lies in finding solutions to differential equations. It therefore caters for readers primarily interested in applied mathematics and physics rather than pure mathematics.The book provides an application-orientated text that is reasonably self-contained. A large number of worked examples have been included to help readers working independently of a teacher. The advance of algebraic computation has made it possible to write programs for the tedious calculations in this research field, and thus the book also makes a survey of computer algebra packages.

Nonlinear Fokker-Planck Equations

Download Nonlinear Fokker-Planck Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540212647
Total Pages : 414 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Fokker-Planck Equations by : T.D. Frank

Download or read book Nonlinear Fokker-Planck Equations written by T.D. Frank and published by Springer Science & Business Media. This book was released on 2005-01-07 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Centered around the natural phenomena of relaxations and fluctuations, this monograph provides readers with a solid foundation in the linear and nonlinear Fokker-Planck equations that describe the evolution of distribution functions. It emphasizes principles and notions of the theory (e.g. self-organization, stochastic feedback, free energy, and Markov processes), while also illustrating the wide applicability (e.g. collective behavior, multistability, front dynamics, and quantum particle distribution). The focus is on relaxation processes in homogeneous many-body systems describable by nonlinear Fokker-Planck equations. Also treated are Langevin equations and correlation functions. Since these phenomena are exhibited by a diverse spectrum of systems, examples and applications span the fields of physics, biology and neurophysics, mathematics, psychology, and biomechanics.

Nonlinear Evolution Equations And Painleve Test

Download Nonlinear Evolution Equations And Painleve Test PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814520233
Total Pages : 345 pages
Book Rating : 4.8/5 (145 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Evolution Equations And Painleve Test by : N Euler

Download or read book Nonlinear Evolution Equations And Painleve Test written by N Euler and published by World Scientific. This book was released on 1988-10-01 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an edited version of lectures given by the authors at a seminar at the Rand Afrikaans University. It gives a survey on the Painlevé test, Painlevé property and integrability. Both ordinary differential equations and partial differential equations are considered.

Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions

Download Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974194
Total Pages : 370 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions by : Thomas Trogdon

Download or read book Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions written by Thomas Trogdon and published by SIAM. This book was released on 2015-12-22 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Riemann?Hilbert problems are fundamental objects of study within complex analysis. Many problems in differential equations and integrable systems, probability and random matrix theory, and asymptotic analysis can be solved by reformulation as a Riemann?Hilbert problem.This book, the most comprehensive one to date on the applied and computational theory of Riemann?Hilbert problems, includes an introduction to computational complex analysis, an introduction to the applied theory of Riemann?Hilbert problems from an analytical and numerical perspective, and a discussion of applications to integrable systems, differential equations, and special function theory. It also includes six fundamental examples and five more sophisticated examples of the analytical and numerical Riemann?Hilbert method, each of mathematical or physical significance or both.?

Implicit Functions and Solution Mappings

Download Implicit Functions and Solution Mappings PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 149391037X
Total Pages : 495 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Implicit Functions and Solution Mappings by : Asen L. Dontchev

Download or read book Implicit Functions and Solution Mappings written by Asen L. Dontchev and published by Springer. This book was released on 2014-06-18 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.

Partition Functions and Automorphic Forms

Download Partition Functions and Automorphic Forms PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030424006
Total Pages : 422 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Partition Functions and Automorphic Forms by : Valery A. Gritsenko

Download or read book Partition Functions and Automorphic Forms written by Valery A. Gritsenko and published by Springer Nature. This book was released on 2020-07-09 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the research in several recently discovered and actively developing mathematical and mathematical physics areas. It focuses on: 1) Feynman integrals and modular functions, 2) hyperbolic and Lorentzian Kac-Moody algebras, related automorphic forms and applications to quantum gravity, 3) superconformal indices and elliptic hypergeometric integrals, related instanton partition functions, 4) moonshine, its arithmetic aspects, Jacobi forms, elliptic genus, and string theory, and 5) theory and applications of the elliptic Painleve equation, and aspects of Painleve equations in quantum field theories. All the topics covered are related to various partition functions emerging in different supersymmetric and ordinary quantum field theories in curved space-times of different (d=2,3,...,6) dimensions. Presenting multidisciplinary methods (localization, Borcherds products, theory of special functions, Cremona maps, etc) for treating a range of partition functions, the book is intended for graduate students and young postdocs interested in the interaction between quantum field theory and mathematics related to automorphic forms, representation theory, number theory and geometry, and mirror symmetry.

Frontiers In Orthogonal Polynomials And Q-series

Download Frontiers In Orthogonal Polynomials And Q-series PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 981322889X
Total Pages : 577 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Frontiers In Orthogonal Polynomials And Q-series by : M Zuhair Nashed

Download or read book Frontiers In Orthogonal Polynomials And Q-series written by M Zuhair Nashed and published by World Scientific. This book was released on 2018-01-12 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume aims to highlight trends and important directions of research in orthogonal polynomials, q-series, and related topics in number theory, combinatorics, approximation theory, mathematical physics, and computational and applied harmonic analysis. This collection is based on the invited lectures by well-known contributors from the International Conference on Orthogonal Polynomials and q-Series, that was held at the University of Central Florida in Orlando, on May 10-12, 2015. The conference was dedicated to Professor Mourad Ismail on his 70th birthday.The editors strived for a volume that would inspire young researchers and provide a wealth of information in an engaging format. Theoretical, combinatorial and computational/algorithmic aspects are considered, and each chapter contains many references on its topic, when appropriate.

Bäcklund and Darboux Transformations

Download Bäcklund and Darboux Transformations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821870259
Total Pages : 460 pages
Book Rating : 4.8/5 (72 download)

DOWNLOAD NOW!


Book Synopsis Bäcklund and Darboux Transformations by : A. A. Coley

Download or read book Bäcklund and Darboux Transformations written by A. A. Coley and published by American Mathematical Soc.. This book was released on 2001-01-01 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to a classical topic that has undergone rapid and fruitful development over the past 25 years, namely Backlund and Darboux transformations and their applications in the theory of integrable systems, also known as soliton theory. The book consists of two parts. The first is a series of introductory pedagogical lectures presented by leading experts in the field. They are devoted respectively to Backlund transformations of Painleve equations, to the dressing methodand Backlund and Darboux transformations, and to the classical geometry of Backlund transformations and their applications to soliton theory. The second part contains original contributions that represent new developments in the theory and applications of these transformations. Both the introductorylectures and the original talks were presented at an International Workshop that took place in Halifax, Nova Scotia (Canada). This volume covers virtually all recent developments in the theory and applications of Backlund and Darboux transformations.