Crystal Plasticity Finite Element Methods

Download Crystal Plasticity Finite Element Methods PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527642099
Total Pages : 188 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Crystal Plasticity Finite Element Methods by : Franz Roters

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Generalized Continua and Dislocation Theory

Download Generalized Continua and Dislocation Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3709112222
Total Pages : 323 pages
Book Rating : 4.7/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Generalized Continua and Dislocation Theory by : Carlo Sansour

Download or read book Generalized Continua and Dislocation Theory written by Carlo Sansour and published by Springer Science & Business Media. This book was released on 2012-05-27 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects, dislocations and the general theory.- Approaches to generalized continua.- Generalized continuum modelling of crystal plasticity.- Introduction to discrete dislocation dynamics. The book contains four lectures on generalized continua and dislocation theory, reflecting the treatment of the subject at different scales. G. Maugin provides a continuum formulation of defects at the heart of which lies the notion of the material configuration and the material driving forces of in-homogeneities such as dislocations, disclinations, point defects, cracks, phase-transition fronts and shock waves. C. Sansour and S. Skatulla start with a compact treatment of linear transformation groups with subsequent excursion into the continuum theory of generalized continua. After a critical assessment a unified framework of the same is presented. The next contribution by S. Forest gives an account on generalized crystal plasticity. Finally, H. Zbib provides an account of dislocation dynamics and illustrates its fundamental importance at the smallest scale. In three contributions extensive computational results of many examples are presented.

Computer Simulations of Dislocations

Download Computer Simulations of Dislocations PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0198526148
Total Pages : 301 pages
Book Rating : 4.1/5 (985 download)

DOWNLOAD NOW!


Book Synopsis Computer Simulations of Dislocations by : Vasily Bulatov

Download or read book Computer Simulations of Dislocations written by Vasily Bulatov and published by Oxford University Press. This book was released on 2006-11-02 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a variety of methods for computer simulations of crystal defects in the form of "numerical recipes", complete with computer codes and analysis tools. By working through numerous case studies and problems, this book provides a useful starter kit for further method development in the computational materials sciences.

Multiscale Materials Modeling for Nanomechanics

Download Multiscale Materials Modeling for Nanomechanics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319334808
Total Pages : 554 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Materials Modeling for Nanomechanics by : Christopher R. Weinberger

Download or read book Multiscale Materials Modeling for Nanomechanics written by Christopher R. Weinberger and published by Springer. This book was released on 2016-08-30 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.

Introduction to Conventional Transmission Electron Microscopy

Download Introduction to Conventional Transmission Electron Microscopy PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521620066
Total Pages : 741 pages
Book Rating : 4.5/5 (216 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Conventional Transmission Electron Microscopy by : Marc De Graef

Download or read book Introduction to Conventional Transmission Electron Microscopy written by Marc De Graef and published by Cambridge University Press. This book was released on 2003-03-27 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate level textbook covering the fundamentals of conventional transmission electron microscopy, first published in 2003.

X-Ray and Neutron Diffraction in Nonideal Crystals

Download X-Ray and Neutron Diffraction in Nonideal Crystals PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642742912
Total Pages : 483 pages
Book Rating : 4.6/5 (427 download)

DOWNLOAD NOW!


Book Synopsis X-Ray and Neutron Diffraction in Nonideal Crystals by : Mikhail A. Krivoglaz

Download or read book X-Ray and Neutron Diffraction in Nonideal Crystals written by Mikhail A. Krivoglaz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mikhail Alexandrovich Krivoglaz died unexpectedly when he was preparing the English edition of his two-volume monograph on diffraction and diffuse scatter ing of X-rays and neutrons in imperfect crystals. His death was a heavy blow to all who knew him, who had worked with him and to the world science community as a whole. The application of the diffraction techniques for the study of imperfections of crystal structures was the major field of Krivoglaz' work throughout his career in science. He started working in the field in the mid-fifties and since then made fundamental contributions to the theory of real crystals. His results have largely determined the current level of knowledge in this field for more than thirty years. Until the very last days of his life, Krivoglaz continued active studies in the physics of diffraction effects in real crystals. His interest in the theory aided in the explanation of the rapidly advancing experimental studies. The milestones marking important stages of his work were the first mono graph on the theory of X-ray and neutron scattering in real crystals which was published in Russian in 1967 (a revised English edition in 1969), and the two volume monograph published in Russian in 1983-84 (this edition is the revised translation of the latter).

Imperfections in Crystalline Solids

Download Imperfections in Crystalline Solids PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316571718
Total Pages : 535 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Imperfections in Crystalline Solids by : Wei Cai

Download or read book Imperfections in Crystalline Solids written by Wei Cai and published by Cambridge University Press. This book was released on 2016-09-15 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides students with a complete working knowledge of the properties of imperfections in crystalline solids. Readers will learn how to apply the fundamental principles of mechanics and thermodynamics to defect properties in materials science, gaining all the knowledge and tools needed to put this into practice in their own research. Beginning with an introduction to defects and a brief review of basic elasticity theory and statistical thermodynamics, the authors go on to guide the reader in a step-by-step way through point, line, and planar defects, with an emphasis on their structural, thermodynamic, and kinetic properties. Numerous end-of-chapter exercises enable students to put their knowledge into practice, and with solutions for instructors and MATLAB® programs available online, this is an essential text for advanced undergraduate and introductory graduate courses in crystal defects, as well as being ideal for self-study.

Continuum Scale Simulation of Engineering Materials

Download Continuum Scale Simulation of Engineering Materials PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527604219
Total Pages : 885 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Continuum Scale Simulation of Engineering Materials by : Dierk Raabe

Download or read book Continuum Scale Simulation of Engineering Materials written by Dierk Raabe and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 885 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.

Computational Materials Engineering

Download Computational Materials Engineering PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080555497
Total Pages : 359 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Computational Materials Engineering by : Koenraad George Frans Janssens

Download or read book Computational Materials Engineering written by Koenraad George Frans Janssens and published by Academic Press. This book was released on 2010-07-26 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials scientists and engineers, and those involved in materials applications like mechanical engineers, civil engineers, electrical engineers, and chemical engineers. Readers from students to practicing engineers to materials research scientists will find in this book a single source of the major elements that make up contemporary computer modeling of materials characteristics and behavior. The reader will gain an understanding of the underlying statistical and analytical tools that are the basis for modeling complex material interactions, including an understanding of computational thermodynamics and molecular kinetics; as well as various modeling systems. Finally, the book will offer the reader a variety of algorithms to use in solving typical modeling problems so that the theory presented herein can be put to real-world use. - Balanced coverage of fundamentals of materials modeling, as well as more advanced aspects of modeling, such as modeling at all scales from the atomic to the molecular to the macro-material - Concise, yet rigorous mathematical coverage of such analytical tools as the Potts type Monte Carlo method, cellular automata, phase field, dislocation dynamics and Finite Element Analysis in statistical and analytical modeling

Integrated Computational Materials Engineering (ICME) for Metals

Download Integrated Computational Materials Engineering (ICME) for Metals PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118342658
Total Pages : 474 pages
Book Rating : 4.1/5 (183 download)

DOWNLOAD NOW!


Book Synopsis Integrated Computational Materials Engineering (ICME) for Metals by : Mark F. Horstemeyer

Download or read book Integrated Computational Materials Engineering (ICME) for Metals written by Mark F. Horstemeyer and published by John Wiley & Sons. This book was released on 2012-06-07 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-technology tools for designing, optimizing, and manufacturing new materials Integrated computational materials engineering (ICME) uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. Increasingly, ICME is the preferred paradigm for design, development, and manufacturing of structural products. Written by one of the world's leading ICME experts, this text delivers a comprehensive, practical introduction to the field, guiding readers through multiscale materials processing modeling and simulation with easy-to-follow explanations and examples. Following an introductory chapter exploring the core concepts and the various disciplines that have contributed to the development of ICME, the text covers the following important topics with their associated length scale bridging methodologies: Macroscale continuum internal state variable plasticity and damage theory and multistage fatigue Mesoscale analysis: continuum theory methods with discrete features and methods Discrete dislocation dynamics simulations Atomistic modeling methods Electronics structures calculations Next, the author provides three chapters dedicated to detailed case studies, including "From Atoms to Autos: A Redesign of a Cadillac Control Arm," that show how the principles and methods of ICME work in practice. The final chapter examines the future of ICME, forecasting the development of new materials and engineering structures with the help of a cyberinfrastructure that has been recently established. Integrated Computational Materials Engineering (ICME) for Metals is recommended for both students and professionals in engineering and materials science, providing them with new state-of-the-technology tools for selecting, designing, optimizing, and manufacturing new materials. Instructors who adopt this text for coursework can take advantage of PowerPoint lecture notes, a questions and solutions manual, and tutorials to guide students through the models and codes discussed in the text.

TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Download TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030362965
Total Pages : 2046 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings by : The Minerals, Metals & Materials Society

Download or read book TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings written by The Minerals, Metals & Materials Society and published by Springer Nature. This book was released on 2020-02-13 with total page 2046 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection presents papers from the 149th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.

Introduction to Computational Materials Science

Download Introduction to Computational Materials Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107328144
Total Pages : 429 pages
Book Rating : 4.1/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Computational Materials Science by : Richard LeSar

Download or read book Introduction to Computational Materials Science written by Richard LeSar and published by Cambridge University Press. This book was released on 2013-03-28 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behaviour. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modelling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need.

Dislocation Mechanism-Based Crystal Plasticity

Download Dislocation Mechanism-Based Crystal Plasticity PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128145927
Total Pages : 452 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Dislocation Mechanism-Based Crystal Plasticity by : Zhuo Zhuang

Download or read book Dislocation Mechanism-Based Crystal Plasticity written by Zhuo Zhuang and published by Academic Press. This book was released on 2019-04-12 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. - Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale - Presents crystal plasticity theory without size effect - Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) - Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale

Numerical Simulation in Molecular Dynamics

Download Numerical Simulation in Molecular Dynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540680950
Total Pages : 472 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation in Molecular Dynamics by : Michael Griebel

Download or read book Numerical Simulation in Molecular Dynamics written by Michael Griebel and published by Springer Science & Business Media. This book was released on 2007-08-16 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.

Dislocations, Mesoscale Simulations and Plastic Flow

Download Dislocations, Mesoscale Simulations and Plastic Flow PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191664545
Total Pages : 320 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis Dislocations, Mesoscale Simulations and Plastic Flow by : Ladislas Kubin

Download or read book Dislocations, Mesoscale Simulations and Plastic Flow written by Ladislas Kubin and published by OUP Oxford. This book was released on 2013-04-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past twenty years, new experimental approaches, improved models and progress in simulation techniques brought new insights into long-standing issues concerning dislocation-based plasticity in crystalline materials. During this period, three-dimensional dislocation dynamics simulations appeared and reached maturity. Their objectives are to unravel the relation between individual and collective dislocation processes at the mesoscale, to establish connections with atom-scale studies of dislocation core properties and to bridge, in combination with modelling, the gap between defect properties and phenomenological continuum models for plastic flow. Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based. It includes classical studies, which are too often ignored, recent experimental and theoretical advances, as well as a discussion of selected applications on various topics.

Thermally Activated Mechanisms in Crystal Plasticity

Download Thermally Activated Mechanisms in Crystal Plasticity PDF Online Free

Author :
Publisher : Elsevier Science
ISBN 13 : 9780080427034
Total Pages : 433 pages
Book Rating : 4.4/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Thermally Activated Mechanisms in Crystal Plasticity by : Daniel Caillard

Download or read book Thermally Activated Mechanisms in Crystal Plasticity written by Daniel Caillard and published by Elsevier Science. This book was released on 2003 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of the.

Handbook of Materials Modeling

Download Handbook of Materials Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402032862
Total Pages : 2903 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Materials Modeling by : Sidney Yip

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.