Discovering Knowledge in Data

Download Discovering Knowledge in Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471687537
Total Pages : 240 pages
Book Rating : 4.4/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Discovering Knowledge in Data by : Daniel T. Larose

Download or read book Discovering Knowledge in Data written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2005-01-28 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Data Mining by doing data mining Data mining can be revolutionary-but only when it's done right. The powerful black box data mining software now available can produce disastrously misleading results unless applied by a skilled and knowledgeable analyst. Discovering Knowledge in Data: An Introduction to Data Mining provides both the practical experience and the theoretical insight needed to reveal valuable information hidden in large data sets. Employing a "white box" methodology and with real-world case studies, this step-by-step guide walks readers through the various algorithms and statistical structures that underlie the software and presents examples of their operation on actual large data sets. Principal topics include: * Data preprocessing and classification * Exploratory analysis * Decision trees * Neural and Kohonen networks * Hierarchical and k-means clustering * Association rules * Model evaluation techniques Complete with scores of screenshots and diagrams to encourage graphical learning, Discovering Knowledge in Data: An Introduction to Data Mining gives students in Business, Computer Science, and Statistics as well as professionals in the field the power to turn any data warehouse into actionable knowledge. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.

Mining the Web

Download Mining the Web PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 1558607544
Total Pages : 366 pages
Book Rating : 4.5/5 (586 download)

DOWNLOAD NOW!


Book Synopsis Mining the Web by : Soumen Chakrabarti

Download or read book Mining the Web written by Soumen Chakrabarti and published by Morgan Kaufmann. This book was released on 2002-10-09 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive book on mining the Web from the preeminent authority.

Feature Selection for Knowledge Discovery and Data Mining

Download Feature Selection for Knowledge Discovery and Data Mining PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461556899
Total Pages : 225 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Feature Selection for Knowledge Discovery and Data Mining by : Huan Liu

Download or read book Feature Selection for Knowledge Discovery and Data Mining written by Huan Liu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.

Advances in Knowledge Discovery and Data Mining

Download Advances in Knowledge Discovery and Data Mining PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 638 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Advances in Knowledge Discovery and Data Mining by : Usama M. Fayyad

Download or read book Advances in Knowledge Discovery and Data Mining written by Usama M. Fayyad and published by . This book was released on 1996 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.

Data Mining: Concepts and Techniques

Download Data Mining: Concepts and Techniques PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0123814804
Total Pages : 740 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Data Mining: Concepts and Techniques by : Jiawei Han

Download or read book Data Mining: Concepts and Techniques written by Jiawei Han and published by Elsevier. This book was released on 2011-06-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Relational Data Mining

Download Relational Data Mining PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540422891
Total Pages : 422 pages
Book Rating : 4.4/5 (228 download)

DOWNLOAD NOW!


Book Synopsis Relational Data Mining by : Saso Dzeroski

Download or read book Relational Data Mining written by Saso Dzeroski and published by Springer Science & Business Media. This book was released on 2001-08 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.

Data Mining Methods and Models

Download Data Mining Methods and Models PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471756474
Total Pages : 340 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Data Mining Methods and Models by : Daniel T. Larose

Download or read book Data Mining Methods and Models written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2006-02-02 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply powerful Data Mining Methods and Models to Leverage your Data for Actionable Results Data Mining Methods and Models provides: * The latest techniques for uncovering hidden nuggets of information * The insight into how the data mining algorithms actually work * The hands-on experience of performing data mining on large data sets Data Mining Methods and Models: * Applies a "white box" methodology, emphasizing an understanding of the model structures underlying the softwareWalks the reader through the various algorithms and provides examples of the operation of the algorithms on actual large data sets, including a detailed case study, "Modeling Response to Direct-Mail Marketing" * Tests the reader's level of understanding of the concepts and methodologies, with over 110 chapter exercises * Demonstrates the Clementine data mining software suite, WEKA open source data mining software, SPSS statistical software, and Minitab statistical software * Includes a companion Web site, www.dataminingconsultant.com, where the data sets used in the book may be downloaded, along with a comprehensive set of data mining resources. Faculty adopters of the book have access to an array of helpful resources, including solutions to all exercises, a PowerPoint(r) presentation of each chapter, sample data mining course projects and accompanying data sets, and multiple-choice chapter quizzes. With its emphasis on learning by doing, this is an excellent textbook for students in business, computer science, and statistics, as well as a problem-solving reference for data analysts and professionals in the field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available onlne.

Discovering Pluto

Download Discovering Pluto PDF Online Free

Author :
Publisher : University of Arizona Press
ISBN 13 : 0816534314
Total Pages : 502 pages
Book Rating : 4.8/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Discovering Pluto by : Dale P. Cruikshank

Download or read book Discovering Pluto written by Dale P. Cruikshank and published by University of Arizona Press. This book was released on 2018-02-27 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: The story of Pluto and its largest moon, from discovery through the New Horizons flyby--Provided by publisher.

Feature Extraction, Construction and Selection

Download Feature Extraction, Construction and Selection PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461557259
Total Pages : 418 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Feature Extraction, Construction and Selection by : Huan Liu

Download or read book Feature Extraction, Construction and Selection written by Huan Liu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data preprocessing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing field and paints a picture of the state-of-art techniques that can boost the capabilities of many existing data mining tools. The objective of this collection is to increase the awareness of the data mining community about the research of feature extraction, construction and selection, which are currently conducted mainly in isolation. This book is part of our endeavor to produce a contemporary overview of modern solutions, to create synergy among these seemingly different branches, and to pave the way for developing meta-systems and novel approaches. Even with today's advanced computer technologies, discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Feature extraction, construction and selection are a set of techniques that transform and simplify data so as to make data mining tasks easier. Feature construction and selection can be viewed as two sides of the representation problem.

Discovering Statistics Using R

Download Discovering Statistics Using R PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 144628915X
Total Pages : 994 pages
Book Rating : 4.4/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Discovering Statistics Using R by : Andy Field

Download or read book Discovering Statistics Using R written by Andy Field and published by SAGE. This book was released on 2012-03-07 with total page 994 pages. Available in PDF, EPUB and Kindle. Book excerpt: Keeping the uniquely humorous and self-deprecating style that has made students across the world fall in love with Andy Field′s books, Discovering Statistics Using R takes students on a journey of statistical discovery using R, a free, flexible and dynamically changing software tool for data analysis that is becoming increasingly popular across the social and behavioural sciences throughout the world. The journey begins by explaining basic statistical and research concepts before a guided tour of the R software environment. Next you discover the importance of exploring and graphing data, before moving onto statistical tests that are the foundations of the rest of the book (for example correlation and regression). You will then stride confidently into intermediate level analyses such as ANOVA, before ending your journey with advanced techniques such as MANOVA and multilevel models. Although there is enough theory to help you gain the necessary conceptual understanding of what you′re doing, the emphasis is on applying what you learn to playful and real-world examples that should make the experience more fun than you might expect. Like its sister textbooks, Discovering Statistics Using R is written in an irreverent style and follows the same ground-breaking structure and pedagogical approach. The core material is augmented by a cast of characters to help the reader on their way, together with hundreds of examples, self-assessment tests to consolidate knowledge, and additional website material for those wanting to learn more. Given this book′s accessibility, fun spirit, and use of bizarre real-world research it should be essential for anyone wanting to learn about statistics using the freely-available R software.

Data Preparation for Data Mining

Download Data Preparation for Data Mining PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 9781558605299
Total Pages : 566 pages
Book Rating : 4.6/5 (52 download)

DOWNLOAD NOW!


Book Synopsis Data Preparation for Data Mining by : Dorian Pyle

Download or read book Data Preparation for Data Mining written by Dorian Pyle and published by Morgan Kaufmann. This book was released on 1999-03-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.

Data Mining and Knowledge Discovery Handbook

Download Data Mining and Knowledge Discovery Handbook PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038725465X
Total Pages : 1378 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Knowledge Discovery Handbook by : Oded Maimon

Download or read book Data Mining and Knowledge Discovery Handbook written by Oded Maimon and published by Springer Science & Business Media. This book was released on 2006-05-28 with total page 1378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Data Mining and Computational Intelligence

Download Data Mining and Computational Intelligence PDF Online Free

Author :
Publisher : Physica
ISBN 13 : 3790813710
Total Pages : 356 pages
Book Rating : 4.7/5 (98 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Computational Intelligence by : Abraham Kandel

Download or read book Data Mining and Computational Intelligence written by Abraham Kandel and published by Physica. This book was released on 2001-03-13 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many business decisions are made in the absence of complete information about the decision consequences. Credit lines are approved without knowing the future behavior of the customers; stocks are bought and sold without knowing their future prices; parts are manufactured without knowing all the factors affecting their final quality; etc. All these cases can be categorized as decision making under uncertainty. Decision makers (human or automated) can handle uncertainty in different ways. Deferring the decision due to the lack of sufficient information may not be an option, especially in real-time systems. Sometimes expert rules, based on experience and intuition, are used. Decision tree is a popular form of representing a set of mutually exclusive rules. An example of a two-branch tree is: if a credit applicant is a student, approve; otherwise, decline. Expert rules are usually based on some hidden assumptions, which are trying to predict the decision consequences. A hidden assumption of the last rule set is: a student will be a profitable customer. Since the direct predictions of the future may not be accurate, a decision maker can consider using some information from the past. The idea is to utilize the potential similarity between the patterns of the past (e.g., "most students used to be profitable") and the patterns of the future (e.g., "students will be profitable").

Knowledge Discovery from Data Streams

Download Knowledge Discovery from Data Streams PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439826129
Total Pages : 256 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Knowledge Discovery from Data Streams by : Joao Gama

Download or read book Knowledge Discovery from Data Streams written by Joao Gama and published by CRC Press. This book was released on 2010-05-25 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents

Graph Analysis and Visualization

Download Graph Analysis and Visualization PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118845870
Total Pages : 544 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Graph Analysis and Visualization by : Richard Brath

Download or read book Graph Analysis and Visualization written by Richard Brath and published by John Wiley & Sons. This book was released on 2015-01-30 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wring more out of the data with a scientific approach to analysis Graph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book. Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the world of business, finance, strategy, and design, helping extract more information from data and better communicate the results to decision-makers. Study graphical examples of networks using clear and insightful visualizations Analyze specifically-curated, easy-to-use data sets from various industries Learn the software tools and programming languages that extract insights from data Code examples using the popular Python programming language There is a tremendous body of scientific work on network and graph theory, but very little of it directly applies to analyst functions outside of the core sciences – until now. Written for those seeking empirically based, systematic analysis methods and powerful tools that apply outside the lab, Graph Analysis and Visualization is a thorough, authoritative resource.

Discovering Addiction

Download Discovering Addiction PDF Online Free

Author :
Publisher : University of Michigan Press
ISBN 13 : 0472126296
Total Pages : 592 pages
Book Rating : 4.4/5 (721 download)

DOWNLOAD NOW!


Book Synopsis Discovering Addiction by : Nancy D. Campbell

Download or read book Discovering Addiction written by Nancy D. Campbell and published by University of Michigan Press. This book was released on 2019-02-28 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovering Addiction brings the history of human and animal experimentation in addiction science into the present with a wealth of archival research and dozens of oral-history interviews with addiction researchers. Professor Campbell examines the birth of addiction science---the National Academy of Sciences's project to find a pharmacological fix for narcotics addiction in the late 1930s---and then explores the human and primate experimentation involved in the succeeding studies of the "opium problem," revealing how addiction science became "brain science" by the 1990s. Psychoactive drugs have always had multiple personalities---some cause social problems; others solve them---and the study of these drugs involves similar contradictions. Discovering Addiction enriches discussions of bioethics by exploring controversial topics, including the federal prison research that took place in the 1970s---a still unresolved debate that continues to divide the research community---and the effect of new rules regarding informed consent and the calculus of risk and benefit. This fascinating volume is both an informative history and a thought-provoking guide that asks whether it is possible to differentiate between ethical and unethical research by looking closely at how science is made. Nancy D. Campbell is Associate Professor of Science and Technology Studies at Rensselaer Polytechnic Institute and the author of Using Women: Gender, Drug Policy, and Social Justice. "Compelling and original, lively and engaging---Discovering Addiction opens up new ways of thinking about drug policy as well as the historical discourses of addiction." ---Carol Stabile, University of Wisconsin--Milwaukee Also available: Student Bodies: The Influence of Student Health Services in American Society and Medicine, by Heather Munro Prescott Illness and the Limits of Expression, by Kathlyn Conway White Coat, Clenched Fist: The Political Education of an American Physician, by Fitzhugh Mullan

Data Classification

Download Data Classification PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498760589
Total Pages : 710 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Data Classification by : Charu C. Aggarwal

Download or read book Data Classification written by Charu C. Aggarwal and published by CRC Press. This book was released on 2014-07-25 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Coverage of the Entire Area of ClassificationResearch on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlyi