Differential Geometry and Topology, Discrete and Computational Geometry

Download Differential Geometry and Topology, Discrete and Computational Geometry PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 158603507X
Total Pages : 388 pages
Book Rating : 4.5/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Topology, Discrete and Computational Geometry by : Mohamed Boucetta

Download or read book Differential Geometry and Topology, Discrete and Computational Geometry written by Mohamed Boucetta and published by IOS Press. This book was released on with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Handbook of Discrete and Computational Geometry

Download Handbook of Discrete and Computational Geometry PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351645919
Total Pages : 2354 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Discrete and Computational Geometry by : Csaba D. Toth

Download or read book Handbook of Discrete and Computational Geometry written by Csaba D. Toth and published by CRC Press. This book was released on 2017-11-22 with total page 2354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Differential Geometry and Topology, Discrete and Computational Geometry

Download Differential Geometry and Topology, Discrete and Computational Geometry PDF Online Free

Author :
Publisher : Ios PressInc
ISBN 13 : 9781586035075
Total Pages : 373 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Topology, Discrete and Computational Geometry by : Mohamed Boucetta

Download or read book Differential Geometry and Topology, Discrete and Computational Geometry written by Mohamed Boucetta and published by Ios PressInc. This book was released on 2005 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this volume is to give an introduction and overview to differential topology, differential geometry and computational geometry with an emphasis on some interconnections between these three domains of mathematics. The chapters give the background required to begin research in these fields or at their interfaces. They introduce new research domains and both old and new conjectures in these different subjects show some interaction between other sciences close to mathematics. Topics discussed are; the basis of differential topology and combinatorial topology, the link between differential geometry and topology, Riemanian geometry (Levi-Civita connextion, curvature tensor, geodesic, completeness and curvature tensor), characteristic classes (to associate every fibre bundle with isomorphic fiber bundles), the link between differential geometry and the geometry of non smooth objects, computational geometry and concrete applications such as structural geology and graphism.

Computational Topology

Download Computational Topology PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470467690
Total Pages : 241 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Computational Topology by : Herbert Edelsbrunner

Download or read book Computational Topology written by Herbert Edelsbrunner and published by American Mathematical Society. This book was released on 2022-01-31 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.

Digital and Discrete Geometry

Download Digital and Discrete Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319120999
Total Pages : 325 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Digital and Discrete Geometry by : Li M. Chen

Download or read book Digital and Discrete Geometry written by Li M. Chen and published by Springer. This book was released on 2014-12-12 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.

Geometric and Topological Inference

Download Geometric and Topological Inference PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108419399
Total Pages : 247 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Geometric and Topological Inference by : Jean-Daniel Boissonnat

Download or read book Geometric and Topological Inference written by Jean-Daniel Boissonnat and published by Cambridge University Press. This book was released on 2018-09-27 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science.

Introduction to Differential Geometry

Download Introduction to Differential Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3662643405
Total Pages : 426 pages
Book Rating : 4.6/5 (626 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Differential Geometry by : Joel W. Robbin

Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Modern Differential Geometry of Curves and Surfaces with Mathematica

Download Modern Differential Geometry of Curves and Surfaces with Mathematica PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351992201
Total Pages : 1024 pages
Book Rating : 4.3/5 (519 download)

DOWNLOAD NOW!


Book Synopsis Modern Differential Geometry of Curves and Surfaces with Mathematica by : Elsa Abbena

Download or read book Modern Differential Geometry of Curves and Surfaces with Mathematica written by Elsa Abbena and published by CRC Press. This book was released on 2017-09-06 with total page 1024 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.

Differential Geometry and Lie Groups

Download Differential Geometry and Lie Groups PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030460401
Total Pages : 774 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Lie Groups by : Jean Gallier

Download or read book Differential Geometry and Lie Groups written by Jean Gallier and published by Springer Nature. This book was released on 2020-08-14 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers an introduction to differential geometry designed for readers interested in modern geometry processing. Working from basic undergraduate prerequisites, the authors develop manifold theory and Lie groups from scratch; fundamental topics in Riemannian geometry follow, culminating in the theory that underpins manifold optimization techniques. Students and professionals working in computer vision, robotics, and machine learning will appreciate this pathway into the mathematical concepts behind many modern applications. Starting with the matrix exponential, the text begins with an introduction to Lie groups and group actions. Manifolds, tangent spaces, and cotangent spaces follow; a chapter on the construction of manifolds from gluing data is particularly relevant to the reconstruction of surfaces from 3D meshes. Vector fields and basic point-set topology bridge into the second part of the book, which focuses on Riemannian geometry. Chapters on Riemannian manifolds encompass Riemannian metrics, geodesics, and curvature. Topics that follow include submersions, curvature on Lie groups, and the Log-Euclidean framework. The final chapter highlights naturally reductive homogeneous manifolds and symmetric spaces, revealing the machinery needed to generalize important optimization techniques to Riemannian manifolds. Exercises are included throughout, along with optional sections that delve into more theoretical topics. Differential Geometry and Lie Groups: A Computational Perspective offers a uniquely accessible perspective on differential geometry for those interested in the theory behind modern computing applications. Equally suited to classroom use or independent study, the text will appeal to students and professionals alike; only a background in calculus and linear algebra is assumed. Readers looking to continue on to more advanced topics will appreciate the authors’ companion volume Differential Geometry and Lie Groups: A Second Course.

Differential Geometry and Lie Groups

Download Differential Geometry and Lie Groups PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030460479
Total Pages : 627 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Lie Groups by : Jean Gallier

Download or read book Differential Geometry and Lie Groups written by Jean Gallier and published by Springer Nature. This book was released on 2020-08-18 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores advanced topics in differential geometry, chosen for their particular relevance to modern geometry processing. Analytic and algebraic perspectives augment core topics, with the authors taking care to motivate each new concept. Whether working toward theoretical or applied questions, readers will appreciate this accessible exploration of the mathematical concepts behind many modern applications. Beginning with an in-depth study of tensors and differential forms, the authors go on to explore a selection of topics that showcase these tools. An analytic theme unites the early chapters, which cover distributions, integration on manifolds and Lie groups, spherical harmonics, and operators on Riemannian manifolds. An exploration of bundles follows, from definitions to connections and curvature in vector bundles, culminating in a glimpse of Pontrjagin and Chern classes. The final chapter on Clifford algebras and Clifford groups draws the book to an algebraic conclusion, which can be seen as a generalized viewpoint of the quaternions. Differential Geometry and Lie Groups: A Second Course captures the mathematical theory needed for advanced study in differential geometry with a view to furthering geometry processing capabilities. Suited to classroom use or independent study, the text will appeal to students and professionals alike. A first course in differential geometry is assumed; the authors’ companion volume Differential Geometry and Lie Groups: A Computational Perspective provides the ideal preparation.

Computational Geometry

Download Computational Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461210984
Total Pages : 413 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Computational Geometry by : Franco P. Preparata

Download or read book Computational Geometry written by Franco P. Preparata and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2

Curve and Surface Reconstruction

Download Curve and Surface Reconstruction PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139460684
Total Pages : 229 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Curve and Surface Reconstruction by : Tamal K. Dey

Download or read book Curve and Surface Reconstruction written by Tamal K. Dey and published by Cambridge University Press. This book was released on 2006-10-16 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from samples that are not adequately dense and from noisy samples. Voronoi- and Delaunay-based techniques, implicit surface-based methods and Morse theory-based methods are covered. Scientists and engineers working in drug design, medical imaging, CAD, GIS, and many other areas will benefit from this first book on the subject.

Computational Topology for Data Analysis

Download Computational Topology for Data Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009103199
Total Pages : 456 pages
Book Rating : 4.0/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Computational Topology for Data Analysis by : Tamal Krishna Dey

Download or read book Computational Topology for Data Analysis written by Tamal Krishna Dey and published by Cambridge University Press. This book was released on 2022-03-10 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.

Topological (in) Hegel

Download Topological (in) Hegel PDF Online Free

Author :
Publisher : Borislav Dimitrov
ISBN 13 : 1370071213
Total Pages : 520 pages
Book Rating : 4.3/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Topological (in) Hegel by : Borislav G. Dimitrov

Download or read book Topological (in) Hegel written by Borislav G. Dimitrov and published by Borislav Dimitrov. This book was released on 2018-01-23 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to critically examine whether it is methodologically possible to combine mathematical rigor – topology with a systematic dialectical methodology in Hegel, and if so, to provide as result of my interpretation the outline of Hegel’s Analysis Situs, also with the proposed models (build on the topological manifold, cobordism, topological data analysis, persistent homology, simplicial complexes and graph theory, to provide an indication of how the merger of Hegel’s dialectical logic and topology may be instrumental to a systematic logician and of how a systematic dialectical logic perspective may help mathematical model builders.

Functional Differential Geometry

Download Functional Differential Geometry PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262019345
Total Pages : 249 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Functional Differential Geometry by : Gerald Jay Sussman

Download or read book Functional Differential Geometry written by Gerald Jay Sussman and published by MIT Press. This book was released on 2013-07-05 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.

The Geometry and Topology of Three-Manifolds

Download The Geometry and Topology of Three-Manifolds PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470474743
Total Pages : 337 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis The Geometry and Topology of Three-Manifolds by : William P. Thurston

Download or read book The Geometry and Topology of Three-Manifolds written by William P. Thurston and published by American Mathematical Society. This book was released on 2023-06-16 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study.

Elementary Differential Geometry

Download Elementary Differential Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521896711
Total Pages : 335 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Elementary Differential Geometry by : Christian Bär

Download or read book Elementary Differential Geometry written by Christian Bär and published by Cambridge University Press. This book was released on 2010-05-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-read introduction takes the reader from elementary problems through to current research. Ideal for courses and self-study.