Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Differential Calculus On Normed Spaces
Download Differential Calculus On Normed Spaces full books in PDF, epub, and Kindle. Read online Differential Calculus On Normed Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Calculus on Normed Vector Spaces by : Rodney Coleman
Download or read book Calculus on Normed Vector Spaces written by Rodney Coleman and published by Springer Science & Business Media. This book was released on 2012-07-25 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as an introduction to calculus on normed vector spaces at a higher undergraduate or beginning graduate level. The prerequisites include basic calculus and linear algebra, as well as a certain mathematical maturity. All the important topology and functional analysis topics are introduced where necessary. In its attempt to show how calculus on normed vector spaces extends the basic calculus of functions of several variables, this book is one of the few textbooks to bridge the gap between the available elementary texts and high level texts. The inclusion of many non-trivial applications of the theory and interesting exercises provides motivation for the reader.
Book Synopsis Differential Calculus on Normed Spaces by : Henri Cartan
Download or read book Differential Calculus on Normed Spaces written by Henri Cartan and published by Createspace Independent Publishing Platform. This book was released on 2017-08-02 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic and long out of print text by the famous French mathematician Henri Cartan, has finally been retitled and reissued as an unabridged reprint of the Kershaw Publishing Company 1971 edition at remarkably low price for a new generation of university students and teachers. It provides a concise and beautifully written course on rigorous analysis. Unlike most similar texts, which usually develop the theory in either metric or Euclidean spaces, Cartan's text is set entirely in normed vector spaces, particularly Banach spaces. This not only allows the author to develop carefully the concepts of calculus in a setting of maximal generality, it allows him to unify both single and multivariable calculus over either the real or complex scalar fields by considering derivatives of nth orders as linear transformations. This prepares the student for the subsequent study of differentiable manifolds modeled on Banach spaces as well as graduate analysis courses, where normed spaces and their isomorphisms play a central role. More importantly, it's republication in an inexpensive edition finally makes available again the English translations of both long separated halves of Cartan's famous 1965-6 analysis course at the University of Paris: The second half has been in print for over a decade as Differential Forms , published by Dover Books. Without the first half, it has been very difficult for readers of that second half text to be prepared with the proper prerequisites as Cartan originally intended. With both texts now available at very affordable prices, the entire course can now be easily obtained and studied as it was originally intended. The book is divided into two chapters. The first develops the abstract differential calculus. After an introductory section providing the necessary background on the elements of Banach spaces, the Frechet derivative is defined, and proofs are given of the two basic theorems of differential calculus: The mean value theorem and the inverse function theorem. The chapter proceeds with the introduction and study of higher order derivatives and a proof of Taylor's formula. It closes with a study of local maxima and minima including both necessary and sufficient conditions for the existence of such minima. The second chapter is devoted to differential equations. Then the general existence and uniqueness theorems for ordinary differential equations on Banach spaces are proved. Applications of this material to linear equations and to obtaining various properties of solutions of differential equations are then given. Finally the relation between partial differential equations of the first order and ordinary differential equations is discussed. The prerequisites are rigorous first courses in calculus on the real line (elementary analysis), linear algebra on abstract vectors spaces with linear transformations and the basic definitions of topology (metric spaces, topology,etc.) A basic course in differential equations is advised as well. Together with its' sequel, Differential Calculus On Normed Spaces forms the basis for an outstanding advanced undergraduate/first year graduate analysis course in the Bourbakian French tradition of Jean Dieudonn�'s Foundations of Modern Analysis, but a more accessible level and much more affordable then that classic.
Book Synopsis Classical Analysis on Normed Spaces by : Tsoy-Wo Ma
Download or read book Classical Analysis on Normed Spaces written by Tsoy-Wo Ma and published by World Scientific. This book was released on 1995 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an elementary introduction to the classical analysis on normed spaces, paying special attention to nonlinear topics such as fixed points, calculus and ordinary differential equations. It is aimed at beginners who want to get through the basic material as soon as possible and then move on to do their own research immediately. It assumes only general knowledge in finite-dimensional linear algebra, simple calculus and elementary complex analysis. Since the treatment is self-contained with sufficient details, even an undergraduate with mathematical maturity should have no problem working through it alone. Various chapters can be integrated into parts of a Master degree program by course work organized by any regional university. Restricted to finite-dimensional spaces rather than normed spaces, selected chapters can be used for a course in advanced calculus. Engineers and physicists may find this book a handy reference in classical analysis.
Book Synopsis Differential Calculus and Its Applications by : Michael J. Field
Download or read book Differential Calculus and Its Applications written by Michael J. Field and published by Courier Corporation. This book was released on 2013-04-10 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on undergraduate courses in advanced calculus, the treatment covers a wide range of topics, from soft functional analysis and finite-dimensional linear algebra to differential equations on submanifolds of Euclidean space. 1976 edition.
Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis
Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Book Synopsis Advanced Calculus (Revised Edition) by : Lynn Harold Loomis
Download or read book Advanced Calculus (Revised Edition) written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Book Synopsis Holomorphy and Calculus in Normed SPates by : Soo Bong Chae
Download or read book Holomorphy and Calculus in Normed SPates written by Soo Bong Chae and published by CRC Press. This book was released on 2020-11-26 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic introduction to the theory of holomorphic mappings in normed spaces which has been scattered throughout the literature. It gives the necessary, elementary background for all branches of modern mathematics involving differential calculus in higher dimensional spaces.
Book Synopsis Methods of Nonlinear Analysis by : Pavel Drabek
Download or read book Methods of Nonlinear Analysis written by Pavel Drabek and published by Springer Science & Business Media. This book was released on 2007-10-24 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the basic methods of nonlinear analysis are emphasized and illustrated in simple examples. Every considered method is motivated, explained in a general form but in the simplest possible abstract framework. Its applications are shown, particularly to boundary value problems for elementary ordinary or partial differential equations. The text is organized in two levels: a self-contained basic and, organized in appendices, an advanced level for the more experienced reader. Exercises are an organic part of the exposition and accompany the reader throughout the book.
Book Synopsis Holomorphy and Calculus in Normed SPates by : S. B. Chae
Download or read book Holomorphy and Calculus in Normed SPates written by S. B. Chae and published by CRC Press. This book was released on 1985-04-29 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic introduction to the theory of holomorphic mappings in normed spaces which has been scattered throughout the literature. It gives the necessary, elementary background for all branches of modern mathematics involving differential calculus in higher dimensional spaces.
Book Synopsis Mathematical Methods: Linear algebra, normed spaces, distributions, integration by : Jacob Korevaar
Download or read book Mathematical Methods: Linear algebra, normed spaces, distributions, integration written by Jacob Korevaar and published by . This book was released on 1968 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Norm Derivatives and Characterizations of Inner Product Spaces by : Claudi Alsina
Download or read book Norm Derivatives and Characterizations of Inner Product Spaces written by Claudi Alsina and published by World Scientific. This book was released on 2010 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Introduction. 1.1. Historical notes. 1.2. Normed linear spaces. 1.3. Strictly convex normed linear spaces. 1.4. Inner product spaces. 1.5. Orthogonalities in normed linear spaces -- 2. Norm derivatives. 2.1. Norm derivatives : Definition and basic properties. 2.2. Orthogonality relations based on norm derivatives. 2.3. p'[symbol]-orthogonal transformations. 2.4. On the equivalence of two norm derivatives. 2.5. Norm derivatives and projections in normed linear spaces. 2.6. Norm derivatives and Lagrange's identity in normed linear spaces. 2.7. On some extensions of the norm derivatives. 2.8. p-orthogonal additivity -- 3. Norm derivatives and heights. 3.1. Definition and basic properties. 3.2. Characterizations of inner product spaces involving geometrical properties of a height in a triangle. 3.3. Height functions and classical orthogonalities. 3.4. A new orthogonality relation. 3.5. Orthocenters. 3.6. A characterization of inner product spaces involving an isosceles trapezoid property. 3.7. Functional equations of the height transform -- 4. Perpendicular bisectors in Normed spaces. 4.1. Definitions and basic properties. 4.2. A new orthogonality relation. 4.3. Relations between perpendicular bisectors and classical orthogonalities. 4.4. On the radius of the circumscribed circumference of a triangle. 4.5. Circumcenters in a triangle. 4.6. Euler line in real normed space. 4.7. Functional equation of the perpendicular bisector transform -- 5. Bisectrices in real Normed spaces. 5.1. Bisectrices in real normed spaces. 5.2. A new orthogonality relation. 5.3. Functional equation of the bisectrix transform. 5.4. Generalized bisectrices in strictly convex real normed spaces. 5.5. Incenters and generalized bisectrices -- 6. Areas of triangles in Normed spaces. 6.1. Definition of four areas of triangles. 6.2. Classical properties of the areas and characterizations of inner product spaces. 6.3. Equalities between different area functions. 6.4. The area orthogonality.
Book Synopsis Analysis in Euclidean Space by : Kenneth Hoffman
Download or read book Analysis in Euclidean Space written by Kenneth Hoffman and published by Courier Dover Publications. This book was released on 2019-07-17 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed for an introductory course in mathematical analysis at MIT, this text focuses on concepts, principles, and methods. Its introductions to real and complex analysis are closely formulated, and they constitute a natural introduction to complex function theory. Starting with an overview of the real number system, the text presents results for subsets and functions related to Euclidean space of n dimensions. It offers a rigorous review of the fundamentals of calculus, emphasizing power series expansions and introducing the theory of complex-analytic functions. Subsequent chapters cover sequences of functions, normed linear spaces, and the Lebesgue interval. They discuss most of the basic properties of integral and measure, including a brief look at orthogonal expansions. A chapter on differentiable mappings addresses implicit and inverse function theorems and the change of variable theorem. Exercises appear throughout the book, and extensive supplementary material includes a Bibliography, List of Symbols, Index, and an Appendix with background in elementary set theory.
Book Synopsis Linear and Nonlinear Functional Analysis with Applications by : Philippe G. Ciarlet
Download or read book Linear and Nonlinear Functional Analysis with Applications written by Philippe G. Ciarlet and published by SIAM. This book was released on 2013-10-10 with total page 847 pages. Available in PDF, EPUB and Kindle. Book excerpt: This single-volume textbook covers the fundamentals of linear and nonlinear functional analysis, illustrating most of the basic theorems with numerous applications to linear and nonlinear partial differential equations and to selected topics from numerical analysis and optimization theory. This book has pedagogical appeal because it features self-contained and complete proofs of most of the theorems, some of which are not always easy to locate in the literature or are difficult to reconstitute. It also offers 401 problems and 52 figures, plus historical notes and many original references that provide an idea of the genesis of the important results, and it covers most of the core topics from functional analysis.
Book Synopsis Techniques of Functional Analysis for Differential and Integral Equations by : Paul Sacks
Download or read book Techniques of Functional Analysis for Differential and Integral Equations written by Paul Sacks and published by Academic Press. This book was released on 2017-05-16 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics
Book Synopsis Differential Calculus by : Henri Cartan
Download or read book Differential Calculus written by Henri Cartan and published by . This book was released on 1983 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Advanced Calculus of Several Variables by : C. H. Edwards
Download or read book Advanced Calculus of Several Variables written by C. H. Edwards and published by Academic Press. This book was released on 2014-05-10 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra, and approximation of nonlinear mappings by linear ones. The classical applications and computational methods that are responsible for much of the interest and importance of calculus are also considered. This text is organized into six chapters. Chapter I deals with linear algebra and geometry of Euclidean n-space Rn. The multivariable differential calculus is treated in Chapters II and III, while multivariable integral calculus is covered in Chapters IV and V. The last chapter is devoted to venerable problems of the calculus of variations. This publication is intended for students who have completed a standard introductory calculus sequence.
Book Synopsis Analysis in Vector Spaces by : Mustafa A. Akcoglu
Download or read book Analysis in Vector Spaces written by Mustafa A. Akcoglu and published by John Wiley & Sons. This book was released on 2011-09-09 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous introduction to calculus in vector spaces The concepts and theorems of advanced calculus combined withrelated computational methods are essential to understanding nearlyall areas of quantitative science. Analysis in Vector Spacespresents the central results of this classic subject throughrigorous arguments, discussions, and examples. The book aims tocultivate not only knowledge of the major theoretical results, butalso the geometric intuition needed for both mathematicalproblem-solving and modeling in the formal sciences. The authors begin with an outline of key concepts, terminology,and notation and also provide a basic introduction to set theory,the properties of real numbers, and a review of linear algebra. Anelegant approach to eigenvector problems and the spectral theoremsets the stage for later results on volume and integration.Subsequent chapters present the major results of differential andintegral calculus of several variables as well as the theory ofmanifolds. Additional topical coverage includes: Sets and functions Real numbers Vector functions Normed vector spaces First- and higher-order derivatives Diffeomorphisms and manifolds Multiple integrals Integration on manifolds Stokes' theorem Basic point set topology Numerous examples and exercises are provided in each chapter toreinforce new concepts and to illustrate how results can be appliedto additional problems. Furthermore, proofs and examples arepresented in a clear style that emphasizes the underlying intuitiveideas. Counterexamples are provided throughout the book to warnagainst possible mistakes, and extensive appendices outline theconstruction of real numbers, include a fundamental result aboutdimension, and present general results about determinants. Assuming only a fundamental understanding of linear algebra andsingle variable calculus, Analysis in Vector Spaces is anexcellent book for a second course in analysis for mathematics,physics, computer science, and engineering majors at theundergraduate and graduate levels. It also serves as a valuablereference for further study in any discipline that requires a firmunderstanding of mathematical techniques and concepts.