Determining Biogenic and Anthropogenic Contributions to Secondary Organic Aerosol

Download Determining Biogenic and Anthropogenic Contributions to Secondary Organic Aerosol PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Determining Biogenic and Anthropogenic Contributions to Secondary Organic Aerosol by : Archit Mehra

Download or read book Determining Biogenic and Anthropogenic Contributions to Secondary Organic Aerosol written by Archit Mehra and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Contributions and Source Identification of Biogenic and Anthropogenic Hydrocarbons to Secondary Organic Aerosols at Mt. Tai in 2014

Download Contributions and Source Identification of Biogenic and Anthropogenic Hydrocarbons to Secondary Organic Aerosols at Mt. Tai in 2014 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Contributions and Source Identification of Biogenic and Anthropogenic Hydrocarbons to Secondary Organic Aerosols at Mt. Tai in 2014 by :

Download or read book Contributions and Source Identification of Biogenic and Anthropogenic Hydrocarbons to Secondary Organic Aerosols at Mt. Tai in 2014 written by and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Molecular Characterization of Biogenic Secondary Organic Aerosol with Various Analytical Techniques

Download Molecular Characterization of Biogenic Secondary Organic Aerosol with Various Analytical Techniques PDF Online Free

Author :
Publisher :
ISBN 13 : 9780355733846
Total Pages : 154 pages
Book Rating : 4.7/5 (338 download)

DOWNLOAD NOW!


Book Synopsis Molecular Characterization of Biogenic Secondary Organic Aerosol with Various Analytical Techniques by : Peijun Tu

Download or read book Molecular Characterization of Biogenic Secondary Organic Aerosol with Various Analytical Techniques written by Peijun Tu and published by . This book was released on 2018 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Secondary organic aerosol (SOA), which is produced by the oxidation of volatile organic compounds (VOCs) emitted from biogenic and anthropogenic sources, has great impact on the environment and human health. In this dissertation, SOA particles derived from biogenic precursors were characterized with various mass spectrometry techniques for molecular level analysis. Differences in the chemical compositions of these particles at different formation stages were used to gain insight into the formation and fate of SOA in the atmosphere. While not pursued in this dissertation, the changes studied here may also provide significant information about SOA toxicity and harm to human health. ☐ SOA derived from ozonolysis of biogenic precursors was generated in a flow tube reactor and then sent into a photo chamber where the OH radicals could be produced to simulate further aging (fresh SOA oxidation with OH radicals to produce aged SOA). The molecular compositions of both fresh and aged SOA were studied with high resolution ESI-MS, and thousands of unique molecular formulas were characterized. Among these, a class of highly oxidized multifunctional (HOM) components, which are believed to contribute significantly to the formation of SOA, were identified and compared with previously reported Extremely Low-Volatility Organic Compounds (ELVOC) detected in the gas phase and Low Volatility Organic Oxygenated Aerosol (LV-OOA) measurements of the particle phase. HOMs in fresh SOA consisted mostly of monomers and dimers, which are consistent with condensation of ELVOCs reported from a separate study. Aging caused an increase in the average number of carbon atoms per molecule of the HOMs, which is consistent with particle phase oxidation of (less oxidized) oligomers already existing in fresh SOA. For the biogenic precursors and experimental conditions studied, HOMs in fresh biogenic SOA have molecular formulas more closely resembling LVOOA than HOMs in aged SOA, suggesting that aging of biogenic SOA is not a good surrogate for ambient LVOOA. ☐ In a separate set of experiments, SOA particles were size-selected in the 30-100 nm range with a Differential Mobility Analyzer (DMA) and analyzed by both on- and off-line mass spectrometry techniques. The chemical composition was found to change significantly with particle size. Both the average oxygen-to-carbon (O/C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the change of relative abundance of oligomers was opposite as the particle size increases. These changes allowed the relative contributions of condensation, partitioning, and particle phase oligomerization to be determined at various stages of particle formation and growth. Condensation of non-/low- volatility, highly oxidized species dominates the formation/growth of smaller SOA particles, while the partitioning of semi-volatile, less oxidized species tends to play an important role in the growth of larger SOA particles. The formation of oligomers that primarily takes place in the particle phase (accretion reactions) becomes more favored as the volume to surface area ratio of the particle increases. ☐ Additionally, due to the complex molecular components of atmospheric nanoparticles, Reverse Phase Liquid Chromatography (RPLC) and Ion-Mobility Separation (IMS)- Mass Spectrometry were employed for molecular separation. Compositions partially separated based on their size, shape and polarity were subjected to tandem mass spectrometry for structure elucidation. In some cases, isomers/ isobars were identified and separated with the help of HPLC using gradient elution method.

Characterizing the Formation of Secondary Organic Aerosols

Download Characterizing the Formation of Secondary Organic Aerosols PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 34 pages
Book Rating : 4.:/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Characterizing the Formation of Secondary Organic Aerosols by :

Download or read book Characterizing the Formation of Secondary Organic Aerosols written by and published by . This book was released on 2004 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (

Establishing Chemical Mechanisms and Estimating Phase State of Secondary Organic Aerosol From Atmospherically Relevant Organic Precursors

Download Establishing Chemical Mechanisms and Estimating Phase State of Secondary Organic Aerosol From Atmospherically Relevant Organic Precursors PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 352 pages
Book Rating : 4.:/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Establishing Chemical Mechanisms and Estimating Phase State of Secondary Organic Aerosol From Atmospherically Relevant Organic Precursors by : Shashank Jain

Download or read book Establishing Chemical Mechanisms and Estimating Phase State of Secondary Organic Aerosol From Atmospherically Relevant Organic Precursors written by Shashank Jain and published by . This book was released on 2016 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic aerosol (OA) is a ubiquitous component of atmospheric particulate that influences both human health and global climate. A large fraction of OA is secondary in nature (SOA), being produced by oxidation of volatile organic compounds (VOCs) emitted by biogenic and anthropogenic sources. Despite the integral role of SOA in atmospheric processes, there remains a limited scientific understanding of the chemical and physical changes induced in SOA as it ages in the atmosphere. This thesis describes work done to increase the knowledge of processes and properties of atmospherically relevant SOA. In the work presented in this thesis, I have worked on improving an existing innovative, soft ionization aerosol mass spectrometer and utilized it to establish chemical mechanisms for oxidation of atmospherically relevant organic precursors (i.e., Green Leaf Volatiles). I discovered that SOA formation from cis-3-hexen-1-ol is dominated by oligomer and higher molecular weight products, whereas the acetate functionality in cis-3-hexenylacetate inhibited oligomer formation, resulting in SOA that is dominated by low molecular weight products. One of the most important factors contributing to uncertainties in our estimations of SOA mass in the atmosphere, remains our basic assumption that atmospheric SOA is liquid-like, which we have found to be untrue. Hence, I developed a methodology to estimate the phase state of SOA and identified new parameters that can have significant influence on the phase state of atmospheric aerosol. This simplified method eliminates the need for a Scanning Mobility Particle Sizer (SMPS) and directly measures Bounce Factor (BF) of polydisperse SOA using only one multi-stage cascade Electrostatic Low Pressure Impactor (ELPI). The novel method allows for the real time determination of SOA phase state, permitting studies of the relationship between SOA phase, oxidative formation and chemical aging in the atmosphere. I demonstrated that SOA mass loading (CSOA) influences the phase state significantly. Results show that under nominally identical conditions, the maximum BF decreases by approximately 30% at higher CSOA and suggests that extrapolation of experiments not conducted at atmospherically relevant SOA levels to simulate the chemical properties may not yield results that are relevant to our natural environment. My work has provided a better understanding of the mechanisms of aerosol formation at atmospheric concentrations, which is necessary to understand its physical properties. This improved understanding is fundamental to accurately model aerosol formation in the atmosphere, and subsequently evaluate their large-scale effect on human health and environment.

Molecular Composition, Volatility, and Formation Mechanisms of Biogenic Secondary Organic Aerosol

Download Molecular Composition, Volatility, and Formation Mechanisms of Biogenic Secondary Organic Aerosol PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 129 pages
Book Rating : 4.:/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Molecular Composition, Volatility, and Formation Mechanisms of Biogenic Secondary Organic Aerosol by : Emma Louise D'Ambro

Download or read book Molecular Composition, Volatility, and Formation Mechanisms of Biogenic Secondary Organic Aerosol written by Emma Louise D'Ambro and published by . This book was released on 2018 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Characterization of the Molecular Composition of Secondary Organic Aerosols Using High Resolution Mass Spectrometry

Download Characterization of the Molecular Composition of Secondary Organic Aerosols Using High Resolution Mass Spectrometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 274 pages
Book Rating : 4.:/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Characterization of the Molecular Composition of Secondary Organic Aerosols Using High Resolution Mass Spectrometry by : Rachel Elizabeth Sellon

Download or read book Characterization of the Molecular Composition of Secondary Organic Aerosols Using High Resolution Mass Spectrometry written by Rachel Elizabeth Sellon and published by . This book was released on 2012 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric aerosols can affect visibility and the Earth's climate by scattering and absorbing light and they also can have adverse effects on human health. The organic portion of atmospheric aerosols is very complex and is a major fraction of fine particulate matter. High molecular weight (high-MW)/oligomeric organic compounds can make up a large part of this organic fraction and the composition, sources, and formation mechanisms for these compounds are not well understood. This knowledge and understanding is necessary to decrease the uncertainty in the climate affects of aerosols and to improve climate models. This dissertation investigates the composition and formation mechanisms for the high-MW/oligomeric fraction of secondary organic aerosols (SOA) collected in Bakersfield, CA and presents a comparative analysis of chamber and ambient SOA, from both Los Angeles (LA) and Bakersfield, to investigate sources at both locations. A novel sampling technique, nanospray-Desorption Electrospray Ionization (nano-DESI), was used with high resolution mass spectrometry (HR-MS) to determine the molecular formulas of the high molecular weight (HMW)/oligomeric fraction of SOA. Nano-DESI involves direct desorption from the sample surface and was used to limit reactions that can take place with extraction and storage in solvent. The samples were collected in Bakersfield and LA during CalNex 2010. Both Bakersfield and LA are out of compliance with EPA standards of ozone and particulate matter and provide opportunities to examine air masses affected by both anthropogenic and biogenic sources. This dissertation has provided the first evidence of observable changes in the composition of high-MW/oligomeric compounds throughout the day. Using positive mode nano-DESI, afternoon increases in the number of compounds that contain carbon, hydrogen and oxygen (CHO) were observed consistent with photochemistry/ozonolysis as a major source for these compounds. Compounds containing reduced nitrogen groups were dominant at night and had precursors consistent with imine formation products from the reaction of carbonyls and ammonia. In the negative mode, organonitrates (CHON) and nitroxy organosulfates (CHONS) had larger numbers of compounds in the night/morning samples consistent with nitrate radical formation reactions. A subset of the CHONS compounds and compounds containing sulfur (CHOS) had the same composition as known biogenic organosulfates and nitroxy organosulfates indicating contributions from both biogenic and anthropogenic sources to the SOA. This dissertation also provides the first analysis of the high-MW/oligomeric fraction in size resolved samples; the majority of the compounds were found in aerosol diameters between 0.18-1.0 micrometers and the CHON were bimodal with size. Finally, this dissertation presents the first comparative analysis of the overlap in the composition of this fraction of SOA between ambient and chamber samples. Samples collected in Pasadena, LA and Bakersfield were compared with samples collected in a smog chamber using diesel and isoprene sources. The results indicate that diesel had the highest overlap at both sites, Bakersfield samples were more oxidized, and LA showed evidence of a SOA plume arriving from downtown LA. The addition of ammonia to the diesel chamber experiment was necessary to form many of the 2N compounds found in Bakersfield. These results increase our understanding of the types of compounds found in urban environments and give evidence for the timescales of formation reactions in an ambient environment. They show that the majority of the high-MW oligomeric compounds are found in submicron size particles and that the composition of this fraction of SOA varies with aerosol size. Results from the chamber comparisons show that both diesel and isoprene are important sources for these compounds and also that there other sources are present. Future work that combines this type of analysis, in other ambient environments, with studies of the optical properties of aerosols could be used to help improve climate models and to start to close the gap in our understanding of the climate effects of atmospheric aerosols.

Biogenic-Anthropogenic Interactions in Secondary Organic Aerosol Formation and Health Effects of Atmospheric Organic Aerosol

Download Biogenic-Anthropogenic Interactions in Secondary Organic Aerosol Formation and Health Effects of Atmospheric Organic Aerosol PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Biogenic-Anthropogenic Interactions in Secondary Organic Aerosol Formation and Health Effects of Atmospheric Organic Aerosol by : Jianhuai Ye

Download or read book Biogenic-Anthropogenic Interactions in Secondary Organic Aerosol Formation and Health Effects of Atmospheric Organic Aerosol written by Jianhuai Ye and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

On the Importance of Organic Oxygen for Understanding OrganicAerosol Particles

Download On the Importance of Organic Oxygen for Understanding OrganicAerosol Particles PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis On the Importance of Organic Oxygen for Understanding OrganicAerosol Particles by :

Download or read book On the Importance of Organic Oxygen for Understanding OrganicAerosol Particles written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This study shows how aerosol organic oxygen data could provide new information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass (OM) concentration has been estimated by multiplying the measured carbon content by an assumed (OM)-to-organic carbon (OC) factor, usually 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This large uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health. New examination of organic aerosol speciation data shows that the oxygen content is responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-OC factor for all studied sites (urban and non-urban) averaged 1.13. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6 ± 0.2 for urban and 2.1 ± 0.2 for non-urban areas). This analysis suggests that, when aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1 g per 100 g water.

Enabling the Identification, Quantification, and Characterization of Organics in Complex Mixtures to Understand Atmospheric Aerosols

Download Enabling the Identification, Quantification, and Characterization of Organics in Complex Mixtures to Understand Atmospheric Aerosols PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 167 pages
Book Rating : 4.:/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Enabling the Identification, Quantification, and Characterization of Organics in Complex Mixtures to Understand Atmospheric Aerosols by : Gabriel Avram Isaacman

Download or read book Enabling the Identification, Quantification, and Characterization of Organics in Complex Mixtures to Understand Atmospheric Aerosols written by Gabriel Avram Isaacman and published by . This book was released on 2014 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with vacuum ultraviolet (VUV) photo-ionization. Chapters 3 and 4 describe this new analytical technique and its initial application to determine the structures of unknown compounds and formerly unresolvable mixtures, including a complete description of the chemical composition of two common petroleum products related to anthropogenic emissions: diesel fuel and motor oil. The distribution of hydrocarbon isomers in these mixtures - found to be mostly of branched, cyclic, and saturated - is described with unprecedented detail. Instead of measuring average bulk aerosol properties, the methods developed and applied in this work directly measure the polarity, volatility, and structure of individual components to allow a mechanistic understanding of oxidation processes. Novel characterizations of these complex mixtures are used to elucidate the role of structure and functionality in particle-phase oxidation, including in Chapter 4 the first measurements of relative reaction rates in a complex hydrocarbon particle. Molecular structure is observed to influence particle-phase oxidation in unexpected and important ways, with cyclization decreasing reaction rates by ~30% and branching increasing reaction rates by ~20-50%. The observed structural dependence is proposed to result in compositional changes in anthropogenic organic aerosol downwind of urban areas, which has been confirmed in subsequent work by applying the techniques described here. Measurement of organic aerosol components is extended to ambient environments through the development of instrumentation with the unprecedented capability to measure hourly concentrations and gas/particle partitioning of individual highly oxygenated organic compounds in the atmosphere. Chapters 5 and 6 describe development of new procedures and hardware for the calibration and analysis of oxygenates using the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG), a custom instrument for in situ quantification of gas- and particle-phase organic compounds in the atmosphere. High time resolution measurement of oxygenated compounds is achieved through a reproducible and quantitative methodology for in situ "derivatization"--Replacing highly polar functional groups that cannot be analyzed by traditional gas chromatography with less polar groups. Implementation of a two-channel sampling system for the simultaneous collection of particle-phase and total gas-plus-particle phase samples allows for the first direct measurements of gas/particle partitioning in the atmosphere, significantly advancing the study of atmospheric composition and variability, as well as the processes governing condensation and re-volatilization. This work presents the first in situ measurements of a large suite of highly oxygenated biogenic oxidation products in both the gas- and particle-phase. Isoprene, the most ubiquitous biogenic emission, oxidizes to form 2-methyltetrols and C5 alkene triols, while [alpha]-pinene, the most common monoterpene, forms pinic, pinonic, hydroxyglutaric, and other acids. These compounds are reported in Chapter 7 with unprecedented time resolution and are shown for the first time to have a large gas-phase component, contrary to typical assumptions. Hourly comparisons of these products with anthropogenic aerosol components elucidate the interaction of human and natural emissions at two rural sites: the southeastern, U.S. and Amazonia, Brazil. Anthropogenic influence on SOA formation is proposed to occur through the increase in liquid water caused by anthropogenic sulfate. Furthermore, these unparalleled observations of gas/particle partitioning of biogenic oxidation products demonstrate that partitioning of oxygenates is unexpectedly independent of volatility: many volatile, highly oxygenated compounds have a large particle-phase component that is poorly described by traditional models. These novel conclusions are reached in part by applying the new frameworks developed in previous chapters to understand the properties of unidentified compounds, demonstrating the importance of detailed characterization of atmospheric organic mixtures. Comprehensive analysis of anthropogenic and biogenic emissions and oxidation product mixtures is coupled in this work with high time-resolution measurement of individual organic components to yield significant insights into the transformations of organic aerosols. Oxidation chemistry is observed in both laboratory and field settings to depend on molecular properties, volatility, and atmospheric composition. However, this work demonstrates that these complex processes can be understood through the quantification of individual known and unidentified compounds, combined with their classification into descriptive frameworks.

National Air Quality and Emissions Trends Report

Download National Air Quality and Emissions Trends Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 164 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis National Air Quality and Emissions Trends Report by :

Download or read book National Air Quality and Emissions Trends Report written by and published by . This book was released on 1994 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Determination of anthropogenic and biogenic contribution to ambient volatile organic carbons

Download Determination of anthropogenic and biogenic contribution to ambient volatile organic carbons PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 200 pages
Book Rating : 4.:/5 (246 download)

DOWNLOAD NOW!


Book Synopsis Determination of anthropogenic and biogenic contribution to ambient volatile organic carbons by : J. Slanina

Download or read book Determination of anthropogenic and biogenic contribution to ambient volatile organic carbons written by J. Slanina and published by . This book was released on 1998 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Composition and Sources of Biogenic Secondary Organic Aerosols in the Southeastern U.S. and Antarctica

Download Composition and Sources of Biogenic Secondary Organic Aerosols in the Southeastern U.S. and Antarctica PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 201 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Composition and Sources of Biogenic Secondary Organic Aerosols in the Southeastern U.S. and Antarctica by : Jun Liu

Download or read book Composition and Sources of Biogenic Secondary Organic Aerosols in the Southeastern U.S. and Antarctica written by Jun Liu and published by . This book was released on 2018 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biogenic Secondary Organic Aerosols (bSOA) account for a large fraction of the global aerosols budget, and thus have a significant impact on climate and public health. Observations of bSOA in the southeastern U.S. included Fourier Transform Infrared Spectroscopy (FTIR) and Aerosol Mass Spectrometer (AMS) measurements of submicron mass at Look Rock (LRK), Tennessee, and Centreville (CTR), Alabama. At LRK, Organic mass (OM) sources were apportioned to three factors, including "sulfate-related bSOA" that correlated to sulfate (r=0.72). Single-particle mass spectra also showed three composition types that corresponded to the mass-based factors with spectra cosine similarity of 0.93 and time series correlations of r>0.4. The similarity of the m/z spectra (cosine similarity=0.97) and the time series correlation (r=0.80) of the "sulfate-related bSOA" to the sulfate-containing single-particle type provide evidence for particle composition contributing to selective uptake of isoprene oxidation products onto sulfate particles. NOx had nighttime-to-early-morning peaks 3~10 times higher at CTR than at LRK, but OM sources identified by FTIR had three very similar factors at both sites including Biogenic Organic Aerosols (BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to that of lab-generated particle mass from isoprene and monoterpene with NOx. NOx was correlated with FTIR-BOA and AMS related biogenic factors for NOx concentrations higher than 1 ppb at both sites, producing 0.5 to 1 [mu]g m-3 additional biogenic OM for each 1 ppb increase of NOx. Submicron organic mass (OM), particle number, and cloud condensation nuclei concentrations were measured at a costal Antarctica site and were found to be highest in summer. Natural sources that included marine sea spray and seabird emissions contributed 56% of OM in austral summer but only 3% in austral winter. Fourier transform infrared spectra showed the natural sources of organic aerosol were characterized by amide group absorption, which may be from seabird populations. Carboxylic acid group contributions from natural sources were correlated to incoming solar radiation, indicating both seasonal sources and likely secondary reactions.

An Investigation of the Secondary Organic Aerosol Formation and Volatility in Mixtures of Anthropogenic and Biogenic Precursors Using Smog Chamber Experiments

Download An Investigation of the Secondary Organic Aerosol Formation and Volatility in Mixtures of Anthropogenic and Biogenic Precursors Using Smog Chamber Experiments PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (129 download)

DOWNLOAD NOW!


Book Synopsis An Investigation of the Secondary Organic Aerosol Formation and Volatility in Mixtures of Anthropogenic and Biogenic Precursors Using Smog Chamber Experiments by : Aristeidis Voliotis

Download or read book An Investigation of the Secondary Organic Aerosol Formation and Volatility in Mixtures of Anthropogenic and Biogenic Precursors Using Smog Chamber Experiments written by Aristeidis Voliotis and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Composition and Photochemistry of Anthropogenic and Biogenic Organic Aerosols

Download Composition and Photochemistry of Anthropogenic and Biogenic Organic Aerosols PDF Online Free

Author :
Publisher :
ISBN 13 : 9781339820262
Total Pages : 228 pages
Book Rating : 4.8/5 (22 download)

DOWNLOAD NOW!


Book Synopsis Composition and Photochemistry of Anthropogenic and Biogenic Organic Aerosols by : Sandra Louise Blair

Download or read book Composition and Photochemistry of Anthropogenic and Biogenic Organic Aerosols written by Sandra Louise Blair and published by . This book was released on 2016 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosols can substantially impact human health, atmospheric chemistry, and climate. The composition and photochemistry of a variety of anthropogenic and biogenic primary and secondary organic aerosols (POA and SOA) have yet to be fully characterized. The composition of organic aerosols is extremely complex - they contain a variety of highly oxidized, multifunctional, low vapor pressure organic compounds. The primary focus of this thesis is on the molecular characterization of organic aerosols that are not well understood or have not been studied before, such as primary emissions from electronic cigarettes, iron (III) mediated SOA, and photooxidized biodiesel and diesel fuel SOA. Another focus of this dissertation is the effect of direct photochemical aging on the composition of organic aerosol. Direct photolysis experiments were first applied to a system that is known to have a photolabile composition, alpha-pinene ozonolysis SOA, such that characterization of a photochemical effect would be possible to quantify. Photolysis of more complex SOA that have not been studied before, photooxidized biodiesel and diesel fuel SOA, were also investigated in this thesis. Advanced high resolution mass spectrometry techniques were used in the molecular characterization of organic aerosols, including nano-Desorption Electrospray Ionization Mass Spectrometry (nano-DESI) and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR). An additional suite of online instrumentation was used to measure gas-phase composition, particle-phase composition, particle size and concentration, and absorption properties: Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS), Aerosol Mass Spectrometry (ToF-AMS), Scanning Mobility Particle Sizing (SMPS), and UV-vis spectroscopy. The molecular analysis of these aerosols provides valuable insight to the formation and photochemical behavior of unexpected, polymeric, light absorbing, and unique organosulfur species.

Aerosol Chamber Study of Secondary Organic Aerosol Formation from Mixtures of Anthropogenic and Biogenic Precursors

Download Aerosol Chamber Study of Secondary Organic Aerosol Formation from Mixtures of Anthropogenic and Biogenic Precursors PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Aerosol Chamber Study of Secondary Organic Aerosol Formation from Mixtures of Anthropogenic and Biogenic Precursors by : Yunqi Shao

Download or read book Aerosol Chamber Study of Secondary Organic Aerosol Formation from Mixtures of Anthropogenic and Biogenic Precursors written by Yunqi Shao and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Chemical Characterization of Biogenic Secondary Organic Aerosol Generated from the Oxidation of Plant and Leaf Litter Emissions

Download Chemical Characterization of Biogenic Secondary Organic Aerosol Generated from the Oxidation of Plant and Leaf Litter Emissions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Chemical Characterization of Biogenic Secondary Organic Aerosol Generated from the Oxidation of Plant and Leaf Litter Emissions by : Celia L. Faiola

Download or read book Chemical Characterization of Biogenic Secondary Organic Aerosol Generated from the Oxidation of Plant and Leaf Litter Emissions written by Celia L. Faiola and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric aerosol impact climate by scattering and absorbing radiation and contributing to cloud formation processes. One of the largest uncertainties in climate change predictions is due to limitations in our understanding of the formation of secondary organic aerosol (SOA). This dissertation investigated SOA formation from the oxidation of plant and leaf litter emissions in a laboratory chamber. To accurately measure the biogenic volatile organic compound (BVOC) emissions, a dynamic dilution system was developed and is described in the first study. This system was used to calibrate the GC-MS-FID and improve quantitation with a maximum instrumental error of +/-10%. In the second study, two separate sets of soil and leaf litter samples were transported from the University of Idaho experimental forest and brought back to the lab. The BVOC emissions from these samples were pumped to an aerosol growth chamber where they were oxidized to generate SOA. The resulting SOA composition was similar to SOA formed from the oxidation of other biogenic SOA precursors. Soil/leaf litter BVOC missions were compared to a canopy emission model and contributed from 12-136% of canopy emissions during spring and fall. Results suggest this could be a significiant emission source during those times of the year. In the third and fourth study, coniferous plants were treated with a plant hormone, methyl jasmonate, to simulate herbivory stress. The third study focused on the plant responses to the stress treatment by investigating changes to the BVOC emission profile. There was a high degree of inter- and intra-plant species variability. Some of the compounds most affected by the stress treatment were alpha-pinene, beta-pinene, limonene, 1,8-cineol, beta-myrcene, terpinolene, and the aromatic cymene isomers. The fourth study investigated changes to SOA composition due to changes in the BVOC emission profiles. Most pre-treatment SOA was very similar in composition with Pearson correlation coefficients between the AMS spectra greater than 0.88. The SOA generated after MeJA treatment produced aerosol mass spectra with similar m/z enhancements. This could indicate an herbivory stress mass spectral fingerprint that could be used to identify plant stress at an ecosystem scale.