Algorithms for Reinforcement Learning

Download Algorithms for Reinforcement Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015517
Total Pages : 89 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Reinforcement Learning by : Csaba Grossi

Download or read book Algorithms for Reinforcement Learning written by Csaba Grossi and published by Springer Nature. This book was released on 2022-05-31 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration

Efficient Learning Machines

Download Efficient Learning Machines PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1430259906
Total Pages : 263 pages
Book Rating : 4.4/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Efficient Learning Machines by : Mariette Awad

Download or read book Efficient Learning Machines written by Mariette Awad and published by Apress. This book was released on 2015-04-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.

Understanding Machine Learning

Download Understanding Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107057132
Total Pages : 415 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

Download TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319011685
Total Pages : 170 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains by : Todd Hester

Download or read book TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains written by Todd Hester and published by Springer. This book was released on 2013-06-22 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent’s lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.

Reinforcement Learning, second edition

Download Reinforcement Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262352702
Total Pages : 549 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton

Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Reinforcement Learning and Dynamic Programming Using Function Approximators

Download Reinforcement Learning and Dynamic Programming Using Function Approximators PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439821097
Total Pages : 280 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning and Dynamic Programming Using Function Approximators by : Lucian Busoniu

Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

FSTTCS 2006: foundations of software technology and theoretical computer science [electronic resource]

Download FSTTCS 2006: foundations of software technology and theoretical computer science [electronic resource] PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540499946
Total Pages : 442 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis FSTTCS 2006: foundations of software technology and theoretical computer science [electronic resource] by : S. Arun-Kumar

Download or read book FSTTCS 2006: foundations of software technology and theoretical computer science [electronic resource] written by S. Arun-Kumar and published by Springer Science & Business Media. This book was released on 2006-11-27 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 26th International Conference on the Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2006, held in Kolkata, India, in December 2006. It contains 38 papers that cover a broad variety of current topics from the theory of computing, ranging from formal methods, discrete mathematics, complexity theory, and automata theory to theoretical computer science in general.

Efficient Reinforcement Learning Using Gaussian Processes

Download Efficient Reinforcement Learning Using Gaussian Processes PDF Online Free

Author :
Publisher : KIT Scientific Publishing
ISBN 13 : 3866445695
Total Pages : 226 pages
Book Rating : 4.8/5 (664 download)

DOWNLOAD NOW!


Book Synopsis Efficient Reinforcement Learning Using Gaussian Processes by : Marc Peter Deisenroth

Download or read book Efficient Reinforcement Learning Using Gaussian Processes written by Marc Peter Deisenroth and published by KIT Scientific Publishing. This book was released on 2010 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.

Mathematics for Machine Learning

Download Mathematics for Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108569323
Total Pages : 392 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Algorithms, Part II

Download Algorithms, Part II PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0133847268
Total Pages : 973 pages
Book Rating : 4.1/5 (338 download)

DOWNLOAD NOW!


Book Synopsis Algorithms, Part II by : Robert Sedgewick

Download or read book Algorithms, Part II written by Robert Sedgewick and published by Addison-Wesley Professional. This book was released on 2014-02-01 with total page 973 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is Part II of the fourth edition of Robert Sedgewick and Kevin Wayne’s Algorithms, the leading textbook on algorithms today, widely used in colleges and universities worldwide. Part II contains Chapters 4 through 6 of the book. The fourth edition of Algorithms surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use. The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts. The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants. Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.

Self-Learning Control of Finite Markov Chains

Download Self-Learning Control of Finite Markov Chains PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780824794293
Total Pages : 318 pages
Book Rating : 4.7/5 (942 download)

DOWNLOAD NOW!


Book Synopsis Self-Learning Control of Finite Markov Chains by : A.S. Poznyak

Download or read book Self-Learning Control of Finite Markov Chains written by A.S. Poznyak and published by CRC Press. This book was released on 2000-01-03 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a number of new and potentially useful self-learning (adaptive) control algorithms and theoretical as well as practical results for both unconstrained and constrained finite Markov chains-efficiently processing new information by adjusting the control strategies directly or indirectly.

Analysis of Algorithms

Download Analysis of Algorithms PDF Online Free

Author :
Publisher : Jones & Bartlett Learning
ISBN 13 : 0763707821
Total Pages : 471 pages
Book Rating : 4.7/5 (637 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Algorithms by : Jeffrey J. McConnell

Download or read book Analysis of Algorithms written by Jeffrey J. McConnell and published by Jones & Bartlett Learning. This book was released on 2008 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Structures & Theory of Computation

HCI International 2023 – Late Breaking Papers

Download HCI International 2023 – Late Breaking Papers PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031480570
Total Pages : 540 pages
Book Rating : 4.0/5 (314 download)

DOWNLOAD NOW!


Book Synopsis HCI International 2023 – Late Breaking Papers by : Helmut Degen

Download or read book HCI International 2023 – Late Breaking Papers written by Helmut Degen and published by Springer Nature. This book was released on 2023-11-25 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This seven-volume set LNCS 14054-14060 constitutes the proceedings of the 25th International Conference, HCI International 2023, in Copenhagen, Denmark, in July 2023. For the HCCII 2023 proceedings, a total of 1578 papers and 396 posters was carefully reviewed and selected from 7472 submissions. Additionally, 267 papers and 133 posters are included in the volumes of the proceedings published after the conference, as “Late Breaking Work”. These papers were organized in the following topical sections: HCI Design and User Experience; Cognitive Engineering and Augmented Cognition; Cultural Issues in Design; Technologies for the Aging Population; Accessibility and Design for All; Designing for Health and Wellbeing; Information Design, Visualization, Decision-making and Collaboration; Social Media, Creative Industries and Cultural Digital Experiences; Digital Human Modeling, Ergonomics and Safety; HCI in Automated Vehicles and Intelligent Transportation; Sustainable Green Smart Cities and Smart Industry; eXtended Reality Interactions; Gaming and Gamification Experiences; Interacting with Artificial Intelligence; Security, Privacy, Trust and Ethics; Learning Technologies and Learning Experiences; eCommerce, Digital Marketing and eFinance.

American Doctoral Dissertations

Download American Doctoral Dissertations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 776 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis American Doctoral Dissertations by :

Download or read book American Doctoral Dissertations written by and published by . This book was released on 2001 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Design of Experiments for Reinforcement Learning

Download Design of Experiments for Reinforcement Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319121979
Total Pages : 196 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Design of Experiments for Reinforcement Learning by : Christopher Gatti

Download or read book Design of Experiments for Reinforcement Learning written by Christopher Gatti and published by Springer. This book was released on 2014-11-22 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not commonly employed to study machine learning methods. The results outlined in this work provide insight as to what enables and what has an effect on successful reinforcement learning implementations so that this learning method can be applied to more challenging problems.

Constrained Markov Decision Processes

Download Constrained Markov Decision Processes PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351458248
Total Pages : 256 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Constrained Markov Decision Processes by : Eitan Altman

Download or read book Constrained Markov Decision Processes written by Eitan Altman and published by Routledge. This book was released on 2021-12-17 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other.

PRICAI 2023: Trends in Artificial Intelligence

Download PRICAI 2023: Trends in Artificial Intelligence PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819970199
Total Pages : 525 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis PRICAI 2023: Trends in Artificial Intelligence by : Fenrong Liu

Download or read book PRICAI 2023: Trends in Artificial Intelligence written by Fenrong Liu and published by Springer Nature. This book was released on 2023-11-10 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume set, LNCS 14325-14327 constitutes the thoroughly refereed proceedings of the 20th Pacific Rim Conference on Artificial Intelligence, PRICAI 2023, held in Jakarta, Indonesia, in November 2023. The 95 full papers and 36 short papers presented in these volumes were carefully reviewed and selected from 422 submissions. PRICAI covers a wide range of topics in the areas of social and economic importance for countries in the Pacific Rim: artificial intelligence, machine learning, natural language processing, knowledge representation and reasoning, planning and scheduling, computer vision, distributed artificial intelligence, search methodologies, etc.