Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Descriptive Set Theory And Definable Forcing
Download Descriptive Set Theory And Definable Forcing full books in PDF, epub, and Kindle. Read online Descriptive Set Theory And Definable Forcing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Descriptive Set Theory and Definable Forcing by : Jindřich Zapletal
Download or read book Descriptive Set Theory and Definable Forcing written by Jindřich Zapletal and published by American Mathematical Soc.. This book was released on 2004 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on the relationship between definable forcing and descriptive set theory; the forcing serves as a tool for proving independence of inequalities between cardinal invariants of the continuum.
Book Synopsis Forcing For Mathematicians by : Nik Weaver
Download or read book Forcing For Mathematicians written by Nik Weaver and published by World Scientific. This book was released on 2014-01-24 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics.
Book Synopsis Classical Descriptive Set Theory by : Alexander Kechris
Download or read book Classical Descriptive Set Theory written by Alexander Kechris and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text presents a largely balanced approach to the subject, which combines many elements of the different traditions. It includes a wide variety of examples, more than 400 exercises, and applications, in order to illustrate the general concepts and results of the theory.
Book Synopsis Geometric Set Theory by : Paul B. Larson
Download or read book Geometric Set Theory written by Paul B. Larson and published by American Mathematical Soc.. This book was released on 2020-07-16 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a new research direction in set theory: the study of models of set theory with respect to their extensional overlap or disagreement. In Part I, the method is applied to isolate new distinctions between Borel equivalence relations. Part II contains applications to independence results in Zermelo–Fraenkel set theory without Axiom of Choice. The method makes it possible to classify in great detail various paradoxical objects obtained using the Axiom of Choice; the classifying criterion is a ZF-provable implication between the existence of such objects. The book considers a broad spectrum of objects from analysis, algebra, and combinatorics: ultrafilters, Hamel bases, transcendence bases, colorings of Borel graphs, discontinuous homomorphisms between Polish groups, and many more. The topic is nearly inexhaustible in its variety, and many directions invite further investigation.
Book Synopsis The Role of the Spectrum in the Cyclic Behavior of Composition Operators by : Eva A. Gallardo-Gutieŕrez
Download or read book The Role of the Spectrum in the Cyclic Behavior of Composition Operators written by Eva A. Gallardo-Gutieŕrez and published by American Mathematical Soc.. This book was released on 2004 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction and preliminaries Linear fractional maps with an interior fixed point Non elliptic automorphisms The parabolic non automorphism Supercyclic linear fractional composition operators Endnotes Bibliography.
Book Synopsis Quasi-Ordinary Power Series and Their Zeta Functions by : Enrique Artal-Bartolo
Download or read book Quasi-Ordinary Power Series and Their Zeta Functions written by Enrique Artal-Bartolo and published by American Mathematical Soc.. This book was released on 2005-10-05 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent $Z_{\text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $R\psi_h$ of nearby cycles on $h^{-1}(0).$ In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.
Book Synopsis Uniformizing Dessins and BelyiMaps via Circle Packing by : Philip L. Bowers
Download or read book Uniformizing Dessins and BelyiMaps via Circle Packing written by Philip L. Bowers and published by American Mathematical Soc.. This book was released on 2004 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction Dessins d'enfants Discrete Dessins via circle packing Uniformizing Dessins A menagerie of Dessins d'enfants Computational issues Additional constructions Non-equilateral triangulations The discrete option Appendix: Implementation Bibliography.
Book Synopsis A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring by : Ehud Friedgut
Download or read book A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring written by Ehud Friedgut and published by American Mathematical Soc.. This book was released on 2006 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $\cal{R}$ be the set of all finite graphs $G$ with the Ramsey property that every coloring of the edges of $G$ by two colors yields a monochromatic triangle. In this paper the authors establish a sharp threshold for random graphs with this property. Let $G(n, p)$ be the random graph on $n$ vertices with edge probability $p$. The authors prove that there exists a function $\widehat c=\widehat c(n)=\Theta(1)$ such that for any $\varepsilon > 0$, as $n$ tends to infinity, $Pr\left[G(n, (1-\varepsilon)\widehat c/\sqrt{n}) \in \cal{R} \right] \rightarrow 0$ and $Pr \left[ G(n, (1]\varepsilon)\widehat c/\sqrt{n}) \in \cal{R}\ \right] \rightarrow 1.$. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemeredi's Regularity Lemma to a certain hypergraph setti
Book Synopsis Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines by : Hagen Meltzer
Download or read book Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines written by Hagen Meltzer and published by American Mathematical Soc.. This book was released on 2004 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deals with weighted projective lines, a class of non-commutative curves modelled by Geigle and Lenzing on a graded commutative sheaf theory. They play an important role in representation theory of finite-dimensional algebras; the complexity of the classification of coherent sheaves largely depends on the genus of these curves.
Book Synopsis Kahler Spaces, Nilpotent Orbits, and Singular Reduction by : Johannes Huebschmann
Download or read book Kahler Spaces, Nilpotent Orbits, and Singular Reduction written by Johannes Huebschmann and published by American Mathematical Soc.. This book was released on 2004 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a stratified symplectic space, a suitable concept of stratified Kahler polarization encapsulates Kahler polarizations on the strata and the behaviour of the polarizations across the strata and leads to the notion of stratified Kahler space which establishes an intimate relationship between nilpotent orbits, singular reduction, invariant theory, reductive dual pairs, Jordan triple systems, symmetric domains, and pre-homogeneous spaces: The closure of a holomorphic nilpotent orbit or, equivalently, the closure of the stratum of the associated pre-homogeneous space of parabolic type carries a (positive) normal Kahler structure. In the world of singular Poisson geometry, the closures of principal holomorphic nilpotent orbits, positive definite hermitian JTS's, and certain pre-homogeneous spaces appear as different incarnations of the same structure. The closure of the principal holomorphic nilpotent orbit arises from a semisimple holomorphic orbit by contraction. Symplectic reduction carries a positive Kahler manifold to a positive normal Kahler space in such a way that the sheaf of germs of polarized functions coincides with the ordinary sheaf of germs of holomorphic functions. Symplectic reduction establishes a close relationship between singular reduced spaces and nilpotent orbits of the dual groups. Projectivization of holomorphic nilpotent orbits yields exotic (positive) stratified Kahler structures on complex projective spaces and on certain complex projective varieties including complex projective quadrics. The space of (in general twisted) representations of the fundamental group of a closed surface in a compact Lie group or, equivalently, a moduli space of central Yang-Mills connections on a principal bundle over a surface, inherits a (positive) normal (stratified) Kahler structure. Physical examples are provided by certain reduced spaces arising from angular momentum zero.
Book Synopsis Hilbert Modular Forms: mod $p$ and $p$-Adic Aspects by : Fabrizio Andreatta
Download or read book Hilbert Modular Forms: mod $p$ and $p$-Adic Aspects written by Fabrizio Andreatta and published by American Mathematical Soc.. This book was released on 2005 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: We study Hilbert modular forms in characteristic $p$ and over $p$-adic rings. In the characteristic $p$ theory we describe the kernel and image of the $q$-expansion map and prove the existence of filtration for Hilbert modular forms; we define operators $U$, $V$ and $\Theta_\chi$ and study the variation of the filtration under these operators. Our methods are geometric - comparing holomorphic Hilbert modular forms with rational functions on a moduli scheme with level-$p$ structure, whose poles are supported on the non-ordinary locus.In the $p$-adic theory we study congruences between Hilbert modular forms. This applies to the study of congruences between special values of zeta functions of totally real fields. It also allows us to define $p$-adic Hilbert modular forms 'a la Serre' as $p$-adic uniform limit of classical modular forms, and compare them with $p$-adic modular forms 'a la Katz' that are regular functions on a certain formal moduli scheme. We show that the two notions agree for cusp forms and for a suitable class of weights containing all the classical ones. We extend the operators $V$ and $\Theta_\chi$ to the $p$-adic setting.
Book Synopsis Integrable Hamiltonian Systems on Complex Lie Groups by : Velimir Jurdjevic
Download or read book Integrable Hamiltonian Systems on Complex Lie Groups written by Velimir Jurdjevic and published by American Mathematical Soc.. This book was released on 2005 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies the elastic problems on simply connected manifolds $M_n$ whose orthonormal frame bundle is a Lie group $G$. This title synthesizes ideas from optimal control theory, adapted to variational problems on the principal bundles of Riemannian spaces, and the symplectic geometry of the Lie algebra $\mathfrak{g}, $ of $G$
Book Synopsis An Algebraic Structure for Moufang Quadrangles by : Tom de Medts
Download or read book An Algebraic Structure for Moufang Quadrangles written by Tom de Medts and published by American Mathematical Soc.. This book was released on 2005 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features an article that intends to present a uniform algebraic structure for Moufang quadrangles, and to classify these structures without referring back to the original Moufang quadrangles from which they arise, thereby also giving a new proof for the classification of Moufang quadrangles, which does consist of the division into these 2 parts.
Book Synopsis Infinite Dimensional Complex Symplectic Spaces by : William Norrie Everitt
Download or read book Infinite Dimensional Complex Symplectic Spaces written by William Norrie Everitt and published by American Mathematical Soc.. This book was released on 2004 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex symplectic spaces are non-trivial generalizations of the real symplectic spaces of classical analytical dynamics. This title presents a self-contained investigation of general complex symplectic spaces, and their Lagrangian subspaces, regardless of the finite or infinite dimensionality.
Book Synopsis The Conjugacy Problem and Higman Embeddings by : Aleksandr I︠U︡rʹevich Olʹshanskiĭ
Download or read book The Conjugacy Problem and Higman Embeddings written by Aleksandr I︠U︡rʹevich Olʹshanskiĭ and published by American Mathematical Soc.. This book was released on 2004 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: For every finitely generated recursively presented group $\mathcal G$ we construct a finitely presented group $\mathcal H$ containing $\mathcal G$ such that $\mathcal G$ is (Frattini) embedded into $\mathcal H$ and the group $\mathcal H$ has solvable conjugacy problem if and only if $\mathcal G$ has solvable conjugacy problem.
Book Synopsis Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems by : Denis V. Osin
Download or read book Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems written by Denis V. Osin and published by American Mathematical Soc.. This book was released on 2006 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this the authors obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows them to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric properties of ordinary hyperbolic groups. There is also an introduction and study of the notion of a relatively quasi-convex subgroup of a relatively hyperbolic group and solve somenatural algorithmic problems.
Book Synopsis $v_1$-Periodic Homotopy Groups of $SO(n)$ by : Martin Bendersky
Download or read book $v_1$-Periodic Homotopy Groups of $SO(n)$ written by Martin Bendersky and published by American Mathematical Soc.. This book was released on 2004 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computes the 2-primary $v_1$-periodic homotopy groups of the special orthogonal groups $SO(n)$; the method is to calculate the Bendersky-Thompson spectral sequence, a $K_*$-based unstable homotopy spectral sequence, of $\operatorname{Spin}(n)$.