RETRACTED BOOK: 151 Trading Strategies

Download RETRACTED BOOK: 151 Trading Strategies PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030027929
Total Pages : 480 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis RETRACTED BOOK: 151 Trading Strategies by : Zura Kakushadze

Download or read book RETRACTED BOOK: 151 Trading Strategies written by Zura Kakushadze and published by Springer. This book was released on 2018-12-13 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides detailed descriptions, including more than 550 mathematical formulas, for more than 150 trading strategies across a host of asset classes and trading styles. These include stocks, options, fixed income, futures, ETFs, indexes, commodities, foreign exchange, convertibles, structured assets, volatility, real estate, distressed assets, cash, cryptocurrencies, weather, energy, inflation, global macro, infrastructure, and tax arbitrage. Some strategies are based on machine learning algorithms such as artificial neural networks, Bayes, and k-nearest neighbors. The book also includes source code for illustrating out-of-sample backtesting, around 2,000 bibliographic references, and more than 900 glossary, acronym and math definitions. The presentation is intended to be descriptive and pedagogical and of particular interest to finance practitioners, traders, researchers, academics, and business school and finance program students.

Python Machine Learning

Download Python Machine Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783555149
Total Pages : 455 pages
Book Rating : 4.7/5 (835 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning by : Sebastian Raschka

Download or read book Python Machine Learning written by Sebastian Raschka and published by Packt Publishing Ltd. This book was released on 2015-09-23 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Applied Biomechatronics Using Mathematical Models

Download Applied Biomechatronics Using Mathematical Models PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128125950
Total Pages : 664 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Applied Biomechatronics Using Mathematical Models by : Jorge Garza Ulloa

Download or read book Applied Biomechatronics Using Mathematical Models written by Jorge Garza Ulloa and published by Academic Press. This book was released on 2018-06-16 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Biomechatronics Using Mathematical Models provides an appropriate methodology to detect and measure diseases and injuries relating to human kinematics and kinetics. It features mathematical models that, when applied to engineering principles and techniques in the medical field, can be used in assistive devices that work with bodily signals. The use of data in the kinematics and kinetics analysis of the human body, including musculoskeletal kinetics and joints and their relationship to the central nervous system (CNS) is covered, helping users understand how the complex network of symbiotic systems in the skeletal and muscular system work together to allow movement controlled by the CNS. With the use of appropriate electronic sensors at specific areas connected to bio-instruments, we can obtain enough information to create a mathematical model for assistive devices by analyzing the kinematics and kinetics of the human body. The mathematical models developed in this book can provide more effective devices for use in aiding and improving the function of the body in relation to a variety of injuries and diseases. - Focuses on the mathematical modeling of human kinematics and kinetics - Teaches users how to obtain faster results with these mathematical models - Includes a companion website with additional content that presents MATLAB examples

Expert Systems and Probabilistic Network Models

Download Expert Systems and Probabilistic Network Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461222702
Total Pages : 612 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Expert Systems and Probabilistic Network Models by : Enrique Castillo

Download or read book Expert Systems and Probabilistic Network Models written by Enrique Castillo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence and expert systems have seen a great deal of research in recent years, much of which has been devoted to methods for incorporating uncertainty into models. This book is devoted to providing a thorough and up-to-date survey of this field for researchers and students.

Functional Networks with Applications

Download Functional Networks with Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461556015
Total Pages : 307 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Functional Networks with Applications by : Enrique Castillo

Download or read book Functional Networks with Applications written by Enrique Castillo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.

Applied Predictive Modeling

Download Applied Predictive Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461468493
Total Pages : 595 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Applied Predictive Modeling by : Max Kuhn

Download or read book Applied Predictive Modeling written by Max Kuhn and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

Learning and Soft Computing

Download Learning and Soft Computing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262112550
Total Pages : 556 pages
Book Rating : 4.1/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Learning and Soft Computing by : Vojislav Kecman

Download or read book Learning and Soft Computing written by Vojislav Kecman and published by MIT Press. This book was released on 2001 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491914211
Total Pages : 550 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Josh Patterson

Download or read book Deep Learning written by Josh Patterson and published by "O'Reilly Media, Inc.". This book was released on 2017-07-28 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks. Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. Dive into machine learning concepts in general, as well as deep learning in particular Understand how deep networks evolved from neural network fundamentals Explore the major deep network architectures, including Convolutional and Recurrent Learn how to map specific deep networks to the right problem Walk through the fundamentals of tuning general neural networks and specific deep network architectures Use vectorization techniques for different data types with DataVec, DL4J’s workflow tool Learn how to use DL4J natively on Spark and Hadoop

The Elements of Statistical Learning

Download The Elements of Statistical Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387216065
Total Pages : 545 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis The Elements of Statistical Learning by : Trevor Hastie

Download or read book The Elements of Statistical Learning written by Trevor Hastie and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Cloud Computing, Big Data & Emerging Topics

Download Cloud Computing, Big Data & Emerging Topics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783030848248
Total Pages : 203 pages
Book Rating : 4.8/5 (482 download)

DOWNLOAD NOW!


Book Synopsis Cloud Computing, Big Data & Emerging Topics by : Marcelo Naiouf

Download or read book Cloud Computing, Big Data & Emerging Topics written by Marcelo Naiouf and published by Springer. This book was released on 2021-08-17 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the revised selected papers of the 9th International Conference on Cloud Computing, Big Data & Emerging Topics, JCC-BD&ET 2021, held in La Plata, Argentina*, in June 2021. The 12 full papers and 2 short papers presented were carefully reviewed and selected from a total of 37 submissions. The papers are organized in topical sections on parallel and distributed computing; machine and deep learning; big data; web and mobile computing; visualization.. *The conference was held virtually due to the COVID-19 pandemic.

Regulating Artificial Intelligence

Download Regulating Artificial Intelligence PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030323617
Total Pages : 391 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Regulating Artificial Intelligence by : Thomas Wischmeyer

Download or read book Regulating Artificial Intelligence written by Thomas Wischmeyer and published by Springer Nature. This book was released on 2019-11-29 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book assesses the normative and practical challenges for artificial intelligence (AI) regulation, offers comprehensive information on the laws that currently shape or restrict the design or use of AI, and develops policy recommendations for those areas in which regulation is most urgently needed. By gathering contributions from scholars who are experts in their respective fields of legal research, it demonstrates that AI regulation is not a specialized sub-discipline, but affects the entire legal system and thus concerns all lawyers. Machine learning-based technology, which lies at the heart of what is commonly referred to as AI, is increasingly being employed to make policy and business decisions with broad social impacts, and therefore runs the risk of causing wide-scale damage. At the same time, AI technology is becoming more and more complex and difficult to understand, making it harder to determine whether or not it is being used in accordance with the law. In light of this situation, even tech enthusiasts are calling for stricter regulation of AI. Legislators, too, are stepping in and have begun to pass AI laws, including the prohibition of automated decision-making systems in Article 22 of the General Data Protection Regulation, the New York City AI transparency bill, and the 2017 amendments to the German Cartel Act and German Administrative Procedure Act. While the belief that something needs to be done is widely shared, there is far less clarity about what exactly can or should be done, or what effective regulation might look like. The book is divided into two major parts, the first of which focuses on features common to most AI systems, and explores how they relate to the legal framework for data-driven technologies, which already exists in the form of (national and supra-national) constitutional law, EU data protection and competition law, and anti-discrimination law. In the second part, the book examines in detail a number of relevant sectors in which AI is increasingly shaping decision-making processes, ranging from the notorious social media and the legal, financial and healthcare industries, to fields like law enforcement and tax law, in which we can observe how regulation by AI is becoming a reality.

Applied Computer Sciences in Engineering

Download Applied Computer Sciences in Engineering PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030003507
Total Pages : 635 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Applied Computer Sciences in Engineering by : Juan Carlos Figueroa-García

Download or read book Applied Computer Sciences in Engineering written by Juan Carlos Figueroa-García and published by Springer. This book was released on 2018-09-12 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set (CCIS 915 and CCIS 916) constitutes the refereed proceedings of the 5th Workshop on Engineering Applications, WEA 2018, held in Medellín, Colombia, in October 2018. The 50 revised full papers presented in this volume were carefully reviewed and selected from126 submissions. The papers are organized in topical sections such as computer science; computational intelligence; simulation systems; software engineering; power and energy applications.

E-Learning Systems

Download E-Learning Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319411632
Total Pages : 305 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis E-Learning Systems by : Aleksandra Klašnja-Milićević

Download or read book E-Learning Systems written by Aleksandra Klašnja-Milićević and published by Springer. This book was released on 2016-07-19 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a comprehensive research review of intelligent techniques for personalisation of e-learning systems. Special emphasis is given to intelligent tutoring systems as a particular class of e-learning systems, which support and improve the learning and teaching of domain-specific knowledge. A new approach to perform effective personalization based on Semantic web technologies achieved in a tutoring system is presented. This approach incorporates a recommender system based on collaborative tagging techniques that adapts to the interests and level of students' knowledge. These innovations are important contributions of this monograph. Theoretical models and techniques are illustrated on a real personalised tutoring system for teaching Java programming language. The monograph is directed to, students and researchers interested in the e-learning and personalization techniques.

Hands-on Computer Vision with TensorFlow 2

Download Hands-on Computer Vision with TensorFlow 2 PDF Online Free

Author :
Publisher :
ISBN 13 : 9781788830645
Total Pages : 372 pages
Book Rating : 4.8/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Hands-on Computer Vision with TensorFlow 2 by : Benjamin Planche

Download or read book Hands-on Computer Vision with TensorFlow 2 written by Benjamin Planche and published by . This book was released on 2019 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision is achieving a new frontier of capabilities in fields like health, automobile or robotics. This book explores TensorFlow 2, Google's open-source AI framework, and teaches how to leverage deep neural networks for visual tasks. It will help you acquire the insight and skills to be a part of the exciting advances in computer vision.

Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models

Download Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128207183
Total Pages : 704 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models by : Jorge Garza Ulloa

Download or read book Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models written by Jorge Garza Ulloa and published by Elsevier. This book was released on 2021-11-29 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models focuses on the relationship between three different multidisciplinary branches of engineering: Biomedical Engineering, Cognitive Science and Computer Science through Artificial Intelligence models. These models will be used to study how the nervous system and musculoskeletal system obey movement orders from the brain, as well as the mental processes of the information during cognition when injuries and neurologic diseases are present in the human body. The interaction between these three areas are studied in this book with the objective of obtaining AI models on injuries and neurologic diseases of the human body, studying diseases of the brain, spine and the nerves that connect them with the musculoskeletal system. There are more than 600 diseases of the nervous system, including brain tumors, epilepsy, Parkinson's disease, stroke, and many others. These diseases affect the human cognitive system that sends orders from the central nervous system (CNS) through the peripheral nervous systems (PNS) to do tasks using the musculoskeletal system. These actions can be detected by many Bioinstruments (Biomedical Instruments) and cognitive device data, allowing us to apply AI using Machine Learning-Deep Learning-Cognitive Computing models through algorithms to analyze, detect, classify, and forecast the process of various illnesses, diseases, and injuries of the human body. Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models provides readers with the study of injuries, illness, and neurological diseases of the human body through Artificial Intelligence using Machine Learning (ML), Deep Learning (DL) and Cognitive Computing (CC) models based on algorithms developed with MATLAB® and IBM Watson®. Provides an introduction to Cognitive science, cognitive computing and human cognitive relation to help in the solution of AI Biomedical engineering problems Explain different Artificial Intelligence (AI) including evolutionary algorithms to emulate natural evolution, reinforced learning, Artificial Neural Network (ANN) type and cognitive learning and to obtain many AI models for Biomedical Engineering problems Includes coverage of the evolution Artificial Intelligence through Machine Learning (ML), Deep Learning (DL), Cognitive Computing (CC) using MATLAB® as a programming language with many add-on MATLAB® toolboxes, and AI based commercial products cloud services as: IBM (Cognitive Computing, IBM Watson®, IBM Watson Studio®, IBM Watson Studio Visual Recognition®), and others Provides the necessary tools to accelerate obtaining results for the analysis of injuries, illness, and neurologic diseases that can be detected through the static, kinetics and kinematics, and natural body language data and medical imaging techniques applying AI using ML-DL-CC algorithms with the objective of obtaining appropriate conclusions to create solutions that improve the quality of life of patients

Machine Learning

Download Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262529513
Total Pages : 225 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning by : Ethem Alpaydin

Download or read book Machine Learning written by Ethem Alpaydin and published by MIT Press. This book was released on 2016-10-07 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition—as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as “Big Data” has gotten bigger, the theory of machine learning—the foundation of efforts to process that data into knowledge—has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications. Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of “data science,” and discusses the ethical and legal implications for data privacy and security.

Ecological Informatics

Download Ecological Informatics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540434559
Total Pages : 440 pages
Book Rating : 4.4/5 (345 download)

DOWNLOAD NOW!


Book Synopsis Ecological Informatics by : Friedrich Recknagel

Download or read book Ecological Informatics written by Friedrich Recknagel and published by Springer Science & Business Media. This book was released on 2002-12-11 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ecological Informatics is defined as the design and application of computational techniques for ecological analysis, synthesis, forecasting and management. The book provides an introduction to the scope, concepts and techniques of this newly emerging discipline. It illustrates numerous applications of Ecological Informatics for stream systems, river systems, freshwater lakes and marine systems as well as image recognition at micro and macro scale. Case studies focus on applications of artificial neural networks, genetic algorithms, fuzzy logic and adaptive agents to current ecological management issues such as toxic algal blooms, eutrophication, habitat degradation, conservation of biodiversity and sustainable fishery.