Machine Learning for Financial Risk Management with Python

Download Machine Learning for Financial Risk Management with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492085200
Total Pages : 334 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Financial Risk Management with Python by : Abdullah Karasan

Download or read book Machine Learning for Financial Risk Management with Python written by Abdullah Karasan and published by "O'Reilly Media, Inc.". This book was released on 2021-12-07 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models. Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python. With this book, you will: Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Improve market risk models (VaR and ES) using ML techniques and including liquidity dimension Develop a credit risk analysis using clustering and Bayesian approaches Capture different aspects of liquidity risk with a Gaussian mixture model and Copula model Use machine learning models for fraud detection Predict stock price crash and identify its determinants using machine learning models

Machine Learning in Finance

Download Machine Learning in Finance PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030410684
Total Pages : 565 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Finance by : Matthew F. Dixon

Download or read book Machine Learning in Finance written by Matthew F. Dixon and published by Springer Nature. This book was released on 2020-07-01 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.

Machine Learning for Risk Calculations

Download Machine Learning for Risk Calculations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119791405
Total Pages : 471 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Risk Calculations by : Ignacio Ruiz

Download or read book Machine Learning for Risk Calculations written by Ignacio Ruiz and published by John Wiley & Sons. This book was released on 2021-12-20 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art algorithmic deep learning and tensoring techniques for financial institutions The computational demand of risk calculations in financial institutions has ballooned and shows no sign of stopping. It is no longer viable to simply add more computing power to deal with this increased demand. The solution? Algorithmic solutions based on deep learning and Chebyshev tensors represent a practical way to reduce costs while simultaneously increasing risk calculation capabilities. Machine Learning for Risk Calculations: A Practitioner’s View provides an in-depth review of a number of algorithmic solutions and demonstrates how they can be used to overcome the massive computational burden of risk calculations in financial institutions. This book will get you started by reviewing fundamental techniques, including deep learning and Chebyshev tensors. You’ll then discover algorithmic tools that, in combination with the fundamentals, deliver actual solutions to the real problems financial institutions encounter on a regular basis. Numerical tests and examples demonstrate how these solutions can be applied to practical problems, including XVA and Counterparty Credit Risk, IMM capital, PFE, VaR, FRTB, Dynamic Initial Margin, pricing function calibration, volatility surface parametrisation, portfolio optimisation and others. Finally, you’ll uncover the benefits these techniques provide, the practicalities of implementing them, and the software which can be used. Review the fundamentals of deep learning and Chebyshev tensors Discover pioneering algorithmic techniques that can create new opportunities in complex risk calculation Learn how to apply the solutions to a wide range of real-life risk calculations. Download sample code used in the book, so you can follow along and experiment with your own calculations Realize improved risk management whilst overcoming the burden of limited computational power Quants, IT professionals, and financial risk managers will benefit from this practitioner-oriented approach to state-of-the-art risk calculation.

Deep Learning for Finance

Download Deep Learning for Finance PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098148355
Total Pages : 369 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Finance by : Sofien Kaabar

Download or read book Deep Learning for Finance written by Sofien Kaabar and published by "O'Reilly Media, Inc.". This book was released on 2024-01-08 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is rapidly gaining momentum in the world of finance and trading. But for many professional traders, this sophisticated field has a reputation for being complex and difficult. This hands-on guide teaches you how to develop a deep learning trading model from scratch using Python, and it also helps you create and backtest trading algorithms based on machine learning and reinforcement learning. Sofien Kaabar—financial author, trading consultant, and institutional market strategist—introduces deep learning strategies that combine technical and quantitative analyses. By fusing deep learning concepts with technical analysis, this unique book presents outside-the-box ideas in the world of financial trading. This A-Z guide also includes a full introduction to technical analysis, evaluating machine learning algorithms, and algorithm optimization. Understand and create machine learning and deep learning models Explore the details behind reinforcement learning and see how it's used in time series Understand how to interpret performance evaluation metrics Examine technical analysis and learn how it works in financial markets Create technical indicators in Python and combine them with ML models for optimization Evaluate the models' profitability and predictability to understand their limitations and potential

Deep Learning Tools for Predicting Stock Market Movements

Download Deep Learning Tools for Predicting Stock Market Movements PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1394214316
Total Pages : 358 pages
Book Rating : 4.3/5 (942 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Tools for Predicting Stock Market Movements by : Renuka Sharma

Download or read book Deep Learning Tools for Predicting Stock Market Movements written by Renuka Sharma and published by John Wiley & Sons. This book was released on 2024-04-10 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: DEEP LEARNING TOOLS for PREDICTING STOCK MARKET MOVEMENTS The book provides a comprehensive overview of current research and developments in the field of deep learning models for stock market forecasting in the developed and developing worlds. The book delves into the realm of deep learning and embraces the challenges, opportunities, and transformation of stock market analysis. Deep learning helps foresee market trends with increased accuracy. With advancements in deep learning, new opportunities in styles, tools, and techniques evolve and embrace data-driven insights with theories and practical applications. Learn about designing, training, and applying predictive models with rigorous attention to detail. This book offers critical thinking skills and the cultivation of discerning approaches to market analysis. The book: details the development of an ensemble model for stock market prediction, combining long short-term memory and autoregressive integrated moving average; explains the rapid expansion of quantum computing technologies in financial systems; provides an overview of deep learning techniques for forecasting stock market trends and examines their effectiveness across different time frames and market conditions; explores applications and implications of various models for causality, volatility, and co-integration in stock markets, offering insights to investors and policymakers. Audience The book has a wide audience of researchers in financial technology, financial software engineering, artificial intelligence, professional market investors, investment institutions, and asset management companies.

Math and Architectures of Deep Learning

Download Math and Architectures of Deep Learning PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638350809
Total Pages : 550 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Math and Architectures of Deep Learning by : Krishnendu Chaudhury

Download or read book Math and Architectures of Deep Learning written by Krishnendu Chaudhury and published by Simon and Schuster. This book was released on 2024-05-21 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shine a spotlight into the deep learning “black box”. This comprehensive and detailed guide reveals the mathematical and architectural concepts behind deep learning models, so you can customize, maintain, and explain them more effectively. Inside Math and Architectures of Deep Learning you will find: Math, theory, and programming principles side by side Linear algebra, vector calculus and multivariate statistics for deep learning The structure of neural networks Implementing deep learning architectures with Python and PyTorch Troubleshooting underperforming models Working code samples in downloadable Jupyter notebooks The mathematical paradigms behind deep learning models typically begin as hard-to-read academic papers that leave engineers in the dark about how those models actually function. Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. Written by deep learning expert Krishnendu Chaudhury, you’ll peer inside the “black box” to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Foreword by Prith Banerjee. About the technology Discover what’s going on inside the black box! To work with deep learning you’ll have to choose the right model, train it, preprocess your data, evaluate performance and accuracy, and deal with uncertainty and variability in the outputs of a deployed solution. This book takes you systematically through the core mathematical concepts you’ll need as a working data scientist: vector calculus, linear algebra, and Bayesian inference, all from a deep learning perspective. About the book Math and Architectures of Deep Learning teaches the math, theory, and programming principles of deep learning models laid out side by side, and then puts them into practice with well-annotated Python code. You’ll progress from algebra, calculus, and statistics all the way to state-of-the-art DL architectures taken from the latest research. What's inside The core design principles of neural networks Implementing deep learning with Python and PyTorch Regularizing and optimizing underperforming models About the reader Readers need to know Python and the basics of algebra and calculus. About the author Krishnendu Chaudhury is co-founder and CTO of the AI startup Drishti Technologies. He previously spent a decade each at Google and Adobe. Table of Contents 1 An overview of machine learning and deep learning 2 Vectors, matrices, and tensors in machine learning 3 Classifiers and vector calculus 4 Linear algebraic tools in machine learning 5 Probability distributions in machine learning 6 Bayesian tools for machine learning 7 Function approximation: How neural networks model the world 8 Training neural networks: Forward propagation and backpropagation 9 Loss, optimization, and regularization 10 Convolutions in neural networks 11 Neural networks for image classification and object detection 12 Manifolds, homeomorphism, and neural networks 13 Fully Bayes model parameter estimation 14 Latent space and generative modeling, autoencoders, and variational autoencoders A Appendix

Machine Learning for Algorithmic Trading

Download Machine Learning for Algorithmic Trading PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839216786
Total Pages : 822 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Algorithmic Trading by : Stefan Jansen

Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Large Deviations and Asymptotic Methods in Finance

Download Large Deviations and Asymptotic Methods in Finance PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319116053
Total Pages : 590 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Large Deviations and Asymptotic Methods in Finance by : Peter K. Friz

Download or read book Large Deviations and Asymptotic Methods in Finance written by Peter K. Friz and published by Springer. This book was released on 2015-06-16 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find this book very useful, and the diversity of topics will appeal to people from mathematical finance, probability theory and differential geometry.

Stochastic Volatility Modeling

Download Stochastic Volatility Modeling PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482244071
Total Pages : 520 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Volatility Modeling by : Lorenzo Bergomi

Download or read book Stochastic Volatility Modeling written by Lorenzo Bergomi and published by CRC Press. This book was released on 2015-12-16 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c

Empirical Asset Pricing

Download Empirical Asset Pricing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262039370
Total Pages : 497 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Empirical Asset Pricing by : Wayne Ferson

Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.

Computational Intelligence Applications to Option Pricing, Volatility Forecasting and Value at Risk

Download Computational Intelligence Applications to Option Pricing, Volatility Forecasting and Value at Risk PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331951668X
Total Pages : 177 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Computational Intelligence Applications to Option Pricing, Volatility Forecasting and Value at Risk by : Fahed Mostafa

Download or read book Computational Intelligence Applications to Option Pricing, Volatility Forecasting and Value at Risk written by Fahed Mostafa and published by Springer. This book was released on 2017-02-28 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the power of neural networks in learning complex behavior from the underlying financial time series data. The results presented also show how neural networks can successfully be applied to volatility modeling, option pricing, and value-at-risk modeling. These features mean that they can be applied to market-risk problems to overcome classic problems associated with statistical models.

Machine Learning and Data Sciences for Financial Markets

Download Machine Learning and Data Sciences for Financial Markets PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316516199
Total Pages : 742 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Sciences for Financial Markets by : Agostino Capponi

Download or read book Machine Learning and Data Sciences for Financial Markets written by Agostino Capponi and published by Cambridge University Press. This book was released on 2023-04-30 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leveraging the research efforts of more than sixty experts in the area, this book reviews cutting-edge practices in machine learning for financial markets. Instead of seeing machine learning as a new field, the authors explore the connection between knowledge developed by quantitative finance over the past forty years and techniques generated by the current revolution driven by data sciences and artificial intelligence. The text is structured around three main areas: 'Interactions with investors and asset owners,' which covers robo-advisors and price formation; 'Risk intermediation,' which discusses derivative hedging, portfolio construction, and machine learning for dynamic optimization; and 'Connections with the real economy,' which explores nowcasting, alternative data, and ethics of algorithms. Accessible to a wide audience, this invaluable resource will allow practitioners to include machine learning driven techniques in their day-to-day quantitative practices, while students will build intuition and come to appreciate the technical tools and motivation for the theory.

Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track

Download Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031434277
Total Pages : 745 pages
Book Rating : 4.0/5 (314 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track by : Gianmarco De Francisci Morales

Download or read book Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track written by Gianmarco De Francisci Morales and published by Springer Nature. This book was released on with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Volatility Modeling in Finance

Download Volatility Modeling in Finance PDF Online Free

Author :
Publisher : HiTeX Press
ISBN 13 :
Total Pages : 524 pages
Book Rating : 4.:/5 (661 download)

DOWNLOAD NOW!


Book Synopsis Volatility Modeling in Finance by : William Johnson

Download or read book Volatility Modeling in Finance written by William Johnson and published by HiTeX Press. This book was released on 2024-10-17 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Volatility Modeling in Finance: Techniques for Trading Strategies" offers an incisive look into the pivotal concept of volatility, essential for anyone navigating the financial markets. This comprehensive guide demystifies the intricate dynamics of volatility, combining theoretical insights with practical applications. From understanding the foundational types of volatility to leveraging advanced models like GARCH and stochastic frameworks, the book equips readers with the necessary tools to assess risk and seize opportunities within fluctuating markets. Each chapter is meticulously structured to build on core principles, while incorporating cutting-edge techniques such as machine learning and algorithmic trading. Whether you're a novice seeking to deepen your understanding or a seasoned professional aiming to refine your strategies, this book presents a wealth of knowledge, enriched with case studies and real-world examples. Through its detailed exploration, readers will gain the foresight and strategies needed to capitalize on volatility, transforming a formidable challenge into a powerful ally in the pursuit of financial success.

Machine Learning for Risk Calculations

Download Machine Learning for Risk Calculations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119791383
Total Pages : 471 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Risk Calculations by : Ignacio Ruiz

Download or read book Machine Learning for Risk Calculations written by Ignacio Ruiz and published by John Wiley & Sons. This book was released on 2021-12-28 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art algorithmic deep learning and tensoring techniques for financial institutions The computational demand of risk calculations in financial institutions has ballooned and shows no sign of stopping. It is no longer viable to simply add more computing power to deal with this increased demand. The solution? Algorithmic solutions based on deep learning and Chebyshev tensors represent a practical way to reduce costs while simultaneously increasing risk calculation capabilities. Machine Learning for Risk Calculations: A Practitioner’s View provides an in-depth review of a number of algorithmic solutions and demonstrates how they can be used to overcome the massive computational burden of risk calculations in financial institutions. This book will get you started by reviewing fundamental techniques, including deep learning and Chebyshev tensors. You’ll then discover algorithmic tools that, in combination with the fundamentals, deliver actual solutions to the real problems financial institutions encounter on a regular basis. Numerical tests and examples demonstrate how these solutions can be applied to practical problems, including XVA and Counterparty Credit Risk, IMM capital, PFE, VaR, FRTB, Dynamic Initial Margin, pricing function calibration, volatility surface parametrisation, portfolio optimisation and others. Finally, you’ll uncover the benefits these techniques provide, the practicalities of implementing them, and the software which can be used. Review the fundamentals of deep learning and Chebyshev tensors Discover pioneering algorithmic techniques that can create new opportunities in complex risk calculation Learn how to apply the solutions to a wide range of real-life risk calculations. Download sample code used in the book, so you can follow along and experiment with your own calculations Realize improved risk management whilst overcoming the burden of limited computational power Quants, IT professionals, and financial risk managers will benefit from this practitioner-oriented approach to state-of-the-art risk calculation.

Fundamentals of Deep Learning

Download Fundamentals of Deep Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491925566
Total Pages : 272 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Deep Learning by : Nikhil Buduma

Download or read book Fundamentals of Deep Learning written by Nikhil Buduma and published by "O'Reilly Media, Inc.". This book was released on 2017-05-25 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning

Machine Learning Approaches in Financial Analytics

Download Machine Learning Approaches in Financial Analytics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031610377
Total Pages : 485 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Approaches in Financial Analytics by : Leandros A. Maglaras

Download or read book Machine Learning Approaches in Financial Analytics written by Leandros A. Maglaras and published by Springer Nature. This book was released on with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: