Deep Learning for Social Media Data Analytics

Download Deep Learning for Social Media Data Analytics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031108698
Total Pages : 297 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Social Media Data Analytics by : Tzung-Pei Hong

Download or read book Deep Learning for Social Media Data Analytics written by Tzung-Pei Hong and published by Springer Nature. This book was released on 2022-09-18 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book covers ongoing research in both theory and practical applications of using deep learning for social media data. Social networking platforms are overwhelmed by different contents, and their huge amounts of data have enormous potential to influence business, politics, security, planning and other social aspects. Recently, deep learning techniques have had many successful applications in the AI field. The research presented in this book emerges from the conviction that there is still much progress to be made toward exploiting deep learning in the context of social media data analytics. It includes fifteen chapters, organized into four sections that report on original research in network structure analysis, social media text analysis, user behaviour analysis and social media security analysis. This work could serve as a good reference for researchers, as well as a compilation of innovative ideas and solutions for practitioners interested in applying deep learning techniques to social media data analytics.

Learning Social Media Analytics with R

Download Learning Social Media Analytics with R PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787125467
Total Pages : 394 pages
Book Rating : 4.7/5 (871 download)

DOWNLOAD NOW!


Book Synopsis Learning Social Media Analytics with R by : Raghav Bali

Download or read book Learning Social Media Analytics with R written by Raghav Bali and published by Packt Publishing Ltd. This book was released on 2017-05-26 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tap into the realm of social media and unleash the power of analytics for data-driven insights using R About This Book A practical guide written to help leverage the power of the R eco-system to extract, process, analyze, visualize and model social media data Learn about data access, retrieval, cleaning, and curation methods for data originating from various social media platforms. Visualize and analyze data from social media platforms to understand and model complex relationships using various concepts and techniques such as Sentiment Analysis, Topic Modeling, Text Summarization, Recommendation Systems, Social Network Analysis, Classification, and Clustering. Who This Book Is For It is targeted at IT professionals, Data Scientists, Analysts, Developers, Machine Learning Enthusiasts, social media marketers and anyone with a keen interest in data, analytics, and generating insights from social data. Some background experience in R would be helpful, but not necessary, since this book is written keeping in mind, that readers can have varying levels of expertise. What You Will Learn Learn how to tap into data from diverse social media platforms using the R ecosystem Use social media data to formulate and solve real-world problems Analyze user social networks and communities using concepts from graph theory and network analysis Learn to detect opinion and sentiment, extract themes, topics, and trends from unstructured noisy text data from diverse social media channels Understand the art of representing actionable insights with effective visualizations Analyze data from major social media channels such as Twitter, Facebook, Flickr, Foursquare, Github, StackExchange, and so on Learn to leverage popular R packages such as ggplot2, topicmodels, caret, e1071, tm, wordcloud, twittR, Rfacebook, dplyr, reshape2, and many more In Detail The Internet has truly become humongous, especially with the rise of various forms of social media in the last decade, which give users a platform to express themselves and also communicate and collaborate with each other. This book will help the reader to understand the current social media landscape and to learn how analytics can be leveraged to derive insights from it. This data can be analyzed to gain valuable insights into the behavior and engagement of users, organizations, businesses, and brands. It will help readers frame business problems and solve them using social data. The book will also cover several practical real-world use cases on social media using R and its advanced packages to utilize data science methodologies such as sentiment analysis, topic modeling, text summarization, recommendation systems, social network analysis, classification, and clustering. This will enable readers to learn different hands-on approaches to obtain data from diverse social media sources such as Twitter and Facebook. It will also show readers how to establish detailed workflows to process, visualize, and analyze data to transform social data into actionable insights. Style and approach This book follows a step-by-step approach with detailed strategies for understanding, extracting, analyzing, visualizing, and modeling data from several major social network platforms such as Facebook, Twitter, Foursquare, Flickr, Github, and StackExchange. The chapters cover several real-world use cases and leverage data science, machine learning, network analysis, and graph theory concepts along with the R ecosystem, including popular packages such as ggplot2, caret,dplyr, topicmodels, tm, and so on.

Principles of Social Networking

Download Principles of Social Networking PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811633983
Total Pages : 447 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Principles of Social Networking by : Anupam Biswas

Download or read book Principles of Social Networking written by Anupam Biswas and published by Springer Nature. This book was released on 2021-08-18 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new and innovative current discoveries in social networking which contribute enough knowledge to the research community. The book includes chapters presenting research advances in social network analysis and issues emerged with diverse social media data. The book also presents applications of the theoretical algorithms and network models to analyze real-world large-scale social networks and the data emanating from them as well as characterize the topology and behavior of these networks. Furthermore, the book covers extremely debated topics, surveys, future trends, issues, and challenges.

Challenges and Applications of Data Analytics in Social Perspectives

Download Challenges and Applications of Data Analytics in Social Perspectives PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 179982568X
Total Pages : 324 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Challenges and Applications of Data Analytics in Social Perspectives by : Sathiyamoorthi, V.

Download or read book Challenges and Applications of Data Analytics in Social Perspectives written by Sathiyamoorthi, V. and published by IGI Global. This book was released on 2020-12-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.

Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Download Deep Learning Techniques and Optimization Strategies in Big Data Analytics PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1799811948
Total Pages : 355 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Techniques and Optimization Strategies in Big Data Analytics by : Thomas, J. Joshua

Download or read book Deep Learning Techniques and Optimization Strategies in Big Data Analytics written by Thomas, J. Joshua and published by IGI Global. This book was released on 2019-11-29 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.

Deep Learning in Data Analytics

Download Deep Learning in Data Analytics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030758559
Total Pages : 271 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning in Data Analytics by : Debi Prasanna Acharjya

Download or read book Deep Learning in Data Analytics written by Debi Prasanna Acharjya and published by Springer Nature. This book was released on 2021-08-11 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises theoretical foundations to deep learning, machine learning and computing system, deep learning algorithms, and various deep learning applications. The book discusses significant issues relating to deep learning in data analytics. Further in-depth reading can be done from the detailed bibliography presented at the end of each chapter. Besides, this book's material includes concepts, algorithms, figures, graphs, and tables in guiding researchers through deep learning in data science and its applications for society. Deep learning approaches prevent loss of information and hence enhance the performance of data analysis and learning techniques. It brings up many research issues in the industry and research community to capture and access data effectively. The book provides the conceptual basis of deep learning required to achieve in-depth knowledge in computer and data science. It has been done to make the book more flexible and to stimulate further interest in topics. All these help researchers motivate towards learning and implementing the concepts in real-life applications.

Advanced Deep Learning Applications in Big Data Analytics

Download Advanced Deep Learning Applications in Big Data Analytics PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1799827933
Total Pages : 351 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Advanced Deep Learning Applications in Big Data Analytics by : Bouarara, Hadj Ahmed

Download or read book Advanced Deep Learning Applications in Big Data Analytics written by Bouarara, Hadj Ahmed and published by IGI Global. This book was released on 2020-10-16 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.

Deep Learning: Convergence to Big Data Analytics

Download Deep Learning: Convergence to Big Data Analytics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811334595
Total Pages : 93 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning: Convergence to Big Data Analytics by : Murad Khan

Download or read book Deep Learning: Convergence to Big Data Analytics written by Murad Khan and published by Springer. This book was released on 2018-12-30 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning. Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues. The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions.

Python Social Media Analytics

Download Python Social Media Analytics PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787126757
Total Pages : 307 pages
Book Rating : 4.7/5 (871 download)

DOWNLOAD NOW!


Book Synopsis Python Social Media Analytics by : Siddhartha Chatterjee

Download or read book Python Social Media Analytics written by Siddhartha Chatterjee and published by Packt Publishing Ltd. This book was released on 2017-07-28 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the power of Python to collect, process, and mine deep insights from social media data About This Book Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more Analyze and extract actionable insights from your social data using various Python tools A highly practical guide to conducting efficient social media analytics at scale Who This Book Is For If you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process. What You Will Learn Understand the basics of social media mining Use PyMongo to clean, store, and access data in MongoDB Understand user reactions and emotion detection on Facebook Perform Twitter sentiment analysis and entity recognition using Python Analyze video and campaign performance on YouTube Mine popular trends on GitHub and predict the next big technology Extract conversational topics on public internet forums Analyze user interests on Pinterest Perform large-scale social media analytics on the cloud In Detail Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics, and how you can leverage its capabilities to empower your business. Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. This book explains how to structure the clean data obtained and store in MongoDB using PyMongo. You will also perform web scraping and visualize data using Scrappy and Beautifulsoup. Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark. By the end of this book, you will be able to utilize the power of Python to gain valuable insights from social media data and use them to enhance your business processes. Style and approach This book follows a step-by-step approach to teach readers the concepts of social media analytics using the Python programming language. To explain various data analysis processes, real-world datasets are used wherever required.

Social Media Data Mining and Analytics

Download Social Media Data Mining and Analytics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118824857
Total Pages : 352 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Social Media Data Mining and Analytics by : Gabor Szabo

Download or read book Social Media Data Mining and Analytics written by Gabor Szabo and published by John Wiley & Sons. This book was released on 2018-10-23 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harness the power of social media to predict customer behavior and improve sales Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Social Media Data Mining and Analytics shows analysts how to use sophisticated techniques to mine social media data, obtaining the information they need to generate amazing results for their businesses. Social Media Data Mining and Analytics isn't just another book on the business case for social media. Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Wikipedia, Stack Exchange, LiveJournal, movie reviews, and other rich data sources. In it, you will learn: The four key characteristics of online services-users, social networks, actions, and content The full data discovery lifecycle-data extraction, storage, analysis, and visualization How to work with code and extract data to create solutions How to use Big Data to make accurate customer predictions How to personalize the social media experience using machine learning Using the techniques the authors detail will provide organizations the competitive advantage they need to harness the rich data available from social media platforms.

Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics

Download Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000454533
Total Pages : 217 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics by : R. Sujatha

Download or read book Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics written by R. Sujatha and published by CRC Press. This book was released on 2021-09-22 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science revolves around two giants: Big Data analytics and Deep Learning. It is becoming challenging to handle and retrieve useful information due to how fast data is expanding. This book presents the technologies and tools to simplify and streamline the formation of Big Data as well as Deep Learning systems. This book discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and decision-making. It also covers numerous applications in healthcare, education, communication, media, and entertainment. Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics offers innovative platforms for integrating Big Data and Deep Learning and presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval. FEATURES Provides insight into the skill set that leverages one’s strength to act as a good data analyst Discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and help in decision-making Covers numerous potential applications in healthcare, education, communication, media, and entertainment Offers innovative platforms for integrating Big Data and Deep Learning Presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval from Big Data This book is aimed at industry professionals, academics, research scholars, system modelers, and simulation experts.

Social Network Data Analytics

Download Social Network Data Analytics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441984623
Total Pages : 508 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Social Network Data Analytics by : Charu C. Aggarwal

Download or read book Social Network Data Analytics written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2011-03-18 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.

Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches

Download Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000179516
Total Pages : 267 pages
Book Rating : 4.0/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches by : K. Gayathri Devi

Download or read book Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches written by K. Gayathri Devi and published by CRC Press. This book was released on 2020-10-07 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts and techniques used to run tasks in an automated manner. It discusses computational intelligence in the detection and diagnosis of clinical and biomedical images, covers the automation of a system through machine learning and deep learning approaches, presents data analytics and mining for decision-support applications, and includes case-based reasoning, natural language processing, computer vision, and AI approaches in real-time applications. Academic scientists, researchers, and students in the various domains of computer science engineering, electronics and communication engineering, and information technology, as well as industrial engineers, biomedical engineers, and management, will find this book useful. By the end of this book, you will understand the fundamentals of AI. Various case studies will develop your adaptive thinking to solve real-time AI problems. Features Includes AI-based decision-making approaches Discusses computational intelligence in the detection and diagnosis of clinical and biomedical images Covers automation of systems through machine learning and deep learning approaches and its implications to the real world Presents data analytics and mining for decision-support applications Offers case-based reasoning

Feature Engineering for Machine Learning and Data Analytics

Download Feature Engineering for Machine Learning and Data Analytics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351721275
Total Pages : 419 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Feature Engineering for Machine Learning and Data Analytics by : Guozhu Dong

Download or read book Feature Engineering for Machine Learning and Data Analytics written by Guozhu Dong and published by CRC Press. This book was released on 2018-03-14 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

Social Media Analytics and Practical Applications

Download Social Media Analytics and Practical Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000515338
Total Pages : 68 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Social Media Analytics and Practical Applications by : Subodha Kumar

Download or read book Social Media Analytics and Practical Applications written by Subodha Kumar and published by CRC Press. This book was released on 2021-12-30 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social Media Analytics and Practical Applications: The Change to the Competition Landscape provides a framework that allows you to understand and analyze the impact of social media in various industries. It illustrates how social media analytics can help firms build transformational strategies and cope with the challenges of social media technology. By focusing on the relationship between social media and other technology models, such as wisdom of crowds, healthcare, fintech and blockchain, machine learning methods, and 5G, this book is able to provide applications used to understand and analyze the impact of social media. Various industries are called out and illustrate how social media analytics can help firms build transformational strategies and at the same time cope with the challenges that are part of the landscape. The book discusses how social media is a driving force in shaping consumer behavior and spurring innovations by embracing and directly engaging with consumers on social media platforms. By closely reflecting on emerging practices, the book shows how to take advantage of recent advancements and how business operations are being revolutionized. Social Media Analytics and Practical Applications is written for academicians and professionals involved in social media and social media analytics.

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Download Fundamentals of Machine Learning for Predictive Data Analytics, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262361108
Total Pages : 853 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Machine Learning for Predictive Data Analytics, second edition by : John D. Kelleher

Download or read book Fundamentals of Machine Learning for Predictive Data Analytics, second edition written by John D. Kelleher and published by MIT Press. This book was released on 2020-10-20 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Deep Learning-Based Approaches for Sentiment Analysis

Download Deep Learning-Based Approaches for Sentiment Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811512167
Total Pages : 326 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning-Based Approaches for Sentiment Analysis by : Basant Agarwal

Download or read book Deep Learning-Based Approaches for Sentiment Analysis written by Basant Agarwal and published by Springer Nature. This book was released on 2020-01-24 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.