Deep Learning for Computer Vision with SAS

Download Deep Learning for Computer Vision with SAS PDF Online Free

Author :
Publisher : SAS Institute
ISBN 13 : 1642959170
Total Pages : 123 pages
Book Rating : 4.6/5 (429 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Computer Vision with SAS by : Robert Blanchard

Download or read book Deep Learning for Computer Vision with SAS written by Robert Blanchard and published by SAS Institute. This book was released on 2020-06-12 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover deep learning and computer vision with SAS! Deep Learning for Computer Vision with SAS®: An Introduction introduces the pivotal components of deep learning. Readers will gain an in-depth understanding of how to build deep feedforward and convolutional neural networks, as well as variants of denoising autoencoders. Transfer learning is covered to help readers learn about this emerging field. Containing a mix of theory and application, this book will also briefly cover methods for customizing deep learning models to solve novel business problems or answer research questions. SAS programs and data are included to reinforce key concepts and allow readers to follow along with included demonstrations. Readers will learn how to: Define and understand deep learning Build models using deep learning techniques and SAS Viya Apply models to score (inference) new data Modify data for better analysis results Search the hyperparameter space of a deep learning model Leverage transfer learning using supervised and unsupervised methods

Computer Vision with SAS

Download Computer Vision with SAS PDF Online Free

Author :
Publisher :
ISBN 13 : 9781952365041
Total Pages : 112 pages
Book Rating : 4.3/5 (65 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision with SAS by : Susan Kahler

Download or read book Computer Vision with SAS written by Susan Kahler and published by . This book was released on 2020-07-22 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision is a field of artificial intelligence that trains computers to interpret and understand the visual world. In recent years, computer vision has begun to rival and even surpass human visual abilities in many areas. SAS offers many different solutions to train computers to "see" by identifying and classifying objects, and several groundbreaking papers have been written to demonstrate these techniques. The papers included in this special collection demonstrate how the latest computer vision tools and techniques can be used to solve a variety of business problems.

Machine Learning with SAS Viya

Download Machine Learning with SAS Viya PDF Online Free

Author :
Publisher : SAS Institute
ISBN 13 : 1951685377
Total Pages : 309 pages
Book Rating : 4.9/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with SAS Viya by : SAS Institute Inc.

Download or read book Machine Learning with SAS Viya written by SAS Institute Inc. and published by SAS Institute. This book was released on 2020-05-29 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master machine learning with SAS Viya! Machine learning can feel intimidating for new practitioners. Machine Learning with SAS Viya provides everything you need to know to get started with machine learning in SAS Viya, including decision trees, neural networks, and support vector machines. The analytics life cycle is covered from data preparation and discovery to deployment. Working with open-source code? Machine Learning with SAS Viya has you covered – step-by-step instructions are given on how to use SAS Model Manager tools with open source. SAS Model Studio features are highlighted to show how to carry out machine learning in SAS Viya. Demonstrations, practice tasks, and quizzes are included to help sharpen your skills. In this book, you will learn about: Supervised and unsupervised machine learning Data preparation and dealing with missing and unstructured data Model building and selection Improving and optimizing models Model deployment and monitoring performance

Practical Computer Vision Applications Using Deep Learning with CNNs

Download Practical Computer Vision Applications Using Deep Learning with CNNs PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484241673
Total Pages : 421 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Practical Computer Vision Applications Using Deep Learning with CNNs by : Ahmed Fawzy Gad

Download or read book Practical Computer Vision Applications Using Deep Learning with CNNs written by Ahmed Fawzy Gad and published by Apress. This book was released on 2018-12-05 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms. For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than the fully connected ANN (FCNN). You will implement a CNN in Python to give you a full understanding of the model. After consolidating the basics, you will use TensorFlow to build a practical image-recognition model that you will deploy to a web server using Flask, making it accessible over the Internet. Using Kivy and NumPy, you will create cross-platform data science applications with low overheads. This book will help you apply deep learning and computer vision concepts from scratch, step-by-step from conception to production. What You Will Learn Understand how ANNs and CNNs work Create computer vision applications and CNNs from scratch using PythonFollow a deep learning project from conception to production using TensorFlowUse NumPy with Kivy to build cross-platform data science applications Who This Book Is ForData scientists, machine learning and deep learning engineers, software developers.

Natural Language Processing with SAS

Download Natural Language Processing with SAS PDF Online Free

Author :
Publisher :
ISBN 13 : 9781952363184
Total Pages : 74 pages
Book Rating : 4.3/5 (631 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with SAS by :

Download or read book Natural Language Processing with SAS written by and published by . This book was released on 2020-08-31 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Language Processing (NLP) is a branch of artificial intelligence that helps computers understand, interpret, and emulate written or spoken human language. NLP draws from many disciplines including human-generated linguistic rules, machine learning, and deep learning to fill the gap between human communication and machine understanding. The papers included in this special collection demonstrate how NLP can be used to scale the human act of reading, organizing, and quantifying text data.

Deep Learning for Numerical Applications with SAS (Hardcover Edition)

Download Deep Learning for Numerical Applications with SAS (Hardcover Edition) PDF Online Free

Author :
Publisher :
ISBN 13 : 9781642953565
Total Pages : 234 pages
Book Rating : 4.9/5 (535 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Numerical Applications with SAS (Hardcover Edition) by : Henry Bequet

Download or read book Deep Learning for Numerical Applications with SAS (Hardcover Edition) written by Henry Bequet and published by . This book was released on 2019-08-16 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foreword by Oliver Schabenberger, PhD Executive Vice President, Chief Operating Officer and Chief Technology Officer SAS Dive into deep learning! Machine learning and deep learning are ubiquitous in our homes and workplaces-from machine translation to image recognition and predictive analytics to autonomous driving. Deep learning holds the promise of improving many everyday tasks in a variety of disciplines. Much deep learning literature explains the mechanics of deep learning with the goal of implementing cognitive applications fueled by Big Data. This book is different. Written by an expert in high-performance analytics, Deep Learning for Numerical Applications with SAS introduces a new field: Deep Learning for Numerical Applications (DL4NA). Contrary to deep learning, the primary goal of DL4NA is not to learn from data but to dramatically improve the performance of numerical applications by training deep neural networks. Deep Learning for Numerical Applications with SAS presents deep learning concepts in SAS along with step-by-step techniques that allow you to easily reproduce the examples on your high-performance analytics systems. It also discusses the latest hardware innovations that can power your SAS programs: from many-core CPUs to GPUs to FPGAs to ASICs. This book assumes the reader has no prior knowledge of high-performance computing, machine learning, or deep learning. It is intended for SAS developers who want to develop and run the fastest analytics. In addition to discovering the latest trends in hybrid architectures with GPUs and FPGAS, readers will learn how to Use deep learning in SAS Speed up their analytics using deep learning Easily write highly parallel programs using the many task computing paradigms

Learn Computer Vision Using OpenCV

Download Learn Computer Vision Using OpenCV PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484242610
Total Pages : 163 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Learn Computer Vision Using OpenCV by : Sunila Gollapudi

Download or read book Learn Computer Vision Using OpenCV written by Sunila Gollapudi and published by Apress. This book was released on 2019-04-26 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples. The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you’ll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision. After reading this book, you will be able to understand and implement computer vision and its applications with OpenCV using Python. You will also be able to create deep learning models with CNN and RNN and understand how these cutting-edge deep learning architectures work. What You Will LearnUnderstand what computer vision is, and its overall application in intelligent automation systems Discover the deep learning techniques required to build computer vision applications Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis Who This Book Is ForThose who have a basic understanding of machine learning and Python and are looking to learn computer vision and its applications.

Machine Learning with SAS

Download Machine Learning with SAS PDF Online Free

Author :
Publisher :
ISBN 13 : 9781642954760
Total Pages : 168 pages
Book Rating : 4.9/5 (547 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with SAS by :

Download or read book Machine Learning with SAS written by and published by . This book was released on 2019-06-21 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is a branch of artificial intelligence (AI) that develops algorithms that allow computers to learn from examples without being explicitly programmed. Machine learning identifies patterns in the data and models the results. These descriptive models enable a better understanding of the underlying insights the data offers. Machine learning is a powerful tool with many applications, from real-time fraud detection, the Internet of Things (IoT), recommender systems, and smart cars. It will not be long before some form of machine learning is integrated into all machines, augmenting the user experience and automatically running many processes intelligently. SAS offers many different solutions to use machine learning to model and predict your data. The papers included in this special collection demonstrate how cutting-edge machine learning techniques can benefit your data analysis. Also available free as a PDF from sas.com/books.

Learning Deep Learning

Download Learning Deep Learning PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0137470290
Total Pages : 1106 pages
Book Rating : 4.1/5 (374 download)

DOWNLOAD NOW!


Book Synopsis Learning Deep Learning by : Magnus Ekman

Download or read book Learning Deep Learning written by Magnus Ekman and published by Addison-Wesley Professional. This book was released on 2021-07-19 with total page 1106 pages. Available in PDF, EPUB and Kindle. Book excerpt: NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results "To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals." -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA "Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us." -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Deep Learning for Computer Vision with SAS

Download Deep Learning for Computer Vision with SAS PDF Online Free

Author :
Publisher :
ISBN 13 : 9781642959727
Total Pages : 150 pages
Book Rating : 4.9/5 (597 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Computer Vision with SAS by : Robert Blanchard

Download or read book Deep Learning for Computer Vision with SAS written by Robert Blanchard and published by . This book was released on 2020-06-12 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover deep learning and computer vision with SAS! Deep Learning for Computer Vision with SAS(R) An Introduction introduces the pivotal components of deep learning. Readers will gain an in-depth understanding of how to build deep feedforward and convolutional neural networks, as well as variants of denoising autoencoders. Transfer learning is covered to help readers learn about this emerging field. Containing a mix of theory and application, this book will also briefly cover methods for customizing deep learning models to solve novel business problems or answer research questions. SAS programs and data are included to reinforce key concepts and allow readers to follow along with included demonstrations. Readers will learn how to: Define and understand deep learning Build models using deep learning techniques and SAS Viya Apply models to score (inference) new data Modify data for better analysis results Search the hyperparameter space of a deep learning model Leverage transfer learning using supervised and unsupervised methods

Data Mining and Machine Learning

Download Data Mining and Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108473989
Total Pages : 779 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Machine Learning by : Mohammed J. Zaki

Download or read book Data Mining and Machine Learning written by Mohammed J. Zaki and published by Cambridge University Press. This book was released on 2020-01-30 with total page 779 pages. Available in PDF, EPUB and Kindle. Book excerpt: New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.

Deep Learning in Computer Vision

Download Deep Learning in Computer Vision PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351003801
Total Pages : 275 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning in Computer Vision by : Mahmoud Hassaballah

Download or read book Deep Learning in Computer Vision written by Mahmoud Hassaballah and published by CRC Press. This book was released on 2020-03-23 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.

Text Analytics with SAS

Download Text Analytics with SAS PDF Online Free

Author :
Publisher :
ISBN 13 : 9781642954821
Total Pages : 108 pages
Book Rating : 4.9/5 (548 download)

DOWNLOAD NOW!


Book Synopsis Text Analytics with SAS by :

Download or read book Text Analytics with SAS written by and published by . This book was released on 2019-06-14 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: SAS provides many different solutions to investigate and analyze text and operationalize decisioning. Several impressive papers have been written to demonstrate how to use these techniques. We have carefully selected a handful of these from recent Global Forum contributions to introduce you to the topic and let you sample what each has to offer. Also available free as a PDF from sas.com/books.

An Introduction to 3D Computer Vision Techniques and Algorithms

Download An Introduction to 3D Computer Vision Techniques and Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119964474
Total Pages : 485 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to 3D Computer Vision Techniques and Algorithms by : Boguslaw Cyganek

Download or read book An Introduction to 3D Computer Vision Techniques and Algorithms written by Boguslaw Cyganek and published by John Wiley & Sons. This book was released on 2011-08-10 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision encompasses the construction of integrated vision systems and the application of vision to problems of real-world importance. The process of creating 3D models is still rather difficult, requiring mechanical measurement of the camera positions or manual alignment of partial 3D views of a scene. However using algorithms, it is possible to take a collection of stereo-pair images of a scene and then automatically produce a photo-realistic, geometrically accurate digital 3D model. This book provides a comprehensive introduction to the methods, theories and algorithms of 3D computer vision. Almost every theoretical issue is underpinned with practical implementation or a working algorithm using pseudo-code and complete code written in C++ and MatLab®. There is the additional clarification of an accompanying website with downloadable software, case studies and exercises. Organised in three parts, Cyganek and Siebert give a brief history of vision research, and subsequently: present basic low-level image processing operations for image matching, including a separate chapter on image matching algorithms; explain scale-space vision, as well as space reconstruction and multiview integration; demonstrate a variety of practical applications for 3D surface imaging and analysis; provide concise appendices on topics such as the basics of projective geometry and tensor calculus for image processing, distortion and noise in images plus image warping procedures. An Introduction to 3D Computer Vision Algorithms and Techniques is a valuable reference for practitioners and programmers working in 3D computer vision, image processing and analysis as well as computer visualisation. It would also be of interest to advanced students and researchers in the fields of engineering, computer science, clinical photography, robotics, graphics and mathematics.

Fundamentals and Methods of Machine and Deep Learning

Download Fundamentals and Methods of Machine and Deep Learning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119821886
Total Pages : 480 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals and Methods of Machine and Deep Learning by : Pradeep Singh

Download or read book Fundamentals and Methods of Machine and Deep Learning written by Pradeep Singh and published by John Wiley & Sons. This book was released on 2022-02-01 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.

Deep Learning with Azure

Download Deep Learning with Azure PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484236793
Total Pages : 298 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with Azure by : Mathew Salvaris

Download or read book Deep Learning with Azure written by Mathew Salvaris and published by Apress. This book was released on 2018-08-24 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI? Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll Learn Become familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AI Use pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more) Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolving Discover the options for training and operationalizing deep learning models on Azure Who This Book Is For Professional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful.

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala