Dynamic Linear Models with R

Download Dynamic Linear Models with R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387772383
Total Pages : 258 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Linear Models with R by : Giovanni Petris

Download or read book Dynamic Linear Models with R written by Giovanni Petris and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Forecasting: principles and practice

Download Forecasting: principles and practice PDF Online Free

Author :
Publisher : OTexts
ISBN 13 : 0987507117
Total Pages : 380 pages
Book Rating : 4.9/5 (875 download)

DOWNLOAD NOW!


Book Synopsis Forecasting: principles and practice by : Rob J Hyndman

Download or read book Forecasting: principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Dynamic Time Series Models using R-INLA

Download Dynamic Time Series Models using R-INLA PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000622606
Total Pages : 297 pages
Book Rating : 4.0/5 (6 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Time Series Models using R-INLA by : Nalini Ravishanker

Download or read book Dynamic Time Series Models using R-INLA written by Nalini Ravishanker and published by CRC Press. This book was released on 2022-08-10 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic Time Series Models using R-INLA: An Applied Perspective is the outcome of a joint effort to systematically describe the use of R-INLA for analysing time series and showcasing the code and description by several examples. This book introduces the underpinnings of R-INLA and the tools needed for modelling different types of time series using an approximate Bayesian framework. The book is an ideal reference for statisticians and scientists who work with time series data. It provides an excellent resource for teaching a course on Bayesian analysis using state space models for time series. Key Features: Introduction and overview of R-INLA for time series analysis. Gaussian and non-Gaussian state space models for time series. State space models for time series with exogenous predictors. Hierarchical models for a potentially large set of time series. Dynamic modelling of stochastic volatility and spatio-temporal dependence.

Bayesian Forecasting and Dynamic Models

Download Bayesian Forecasting and Dynamic Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475793650
Total Pages : 720 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Forecasting and Dynamic Models by : Mike West

Download or read book Bayesian Forecasting and Dynamic Models written by Mike West and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we are concerned with Bayesian learning and forecast ing in dynamic environments. We describe the structure and theory of classes of dynamic models, and their uses in Bayesian forecasting. The principles, models and methods of Bayesian forecasting have been developed extensively during the last twenty years. This devel opment has involved thorough investigation of mathematical and sta tistical aspects of forecasting models and related techniques. With this has come experience with application in a variety of areas in commercial and industrial, scientific and socio-economic fields. In deed much of the technical development has been driven by the needs of forecasting practitioners. As a result, there now exists a relatively complete statistical and mathematical framework, although much of this is either not properly documented or not easily accessible. Our primary goals in writing this book have been to present our view of this approach to modelling and forecasting, and to provide a rea sonably complete text for advanced university students and research workers. The text is primarily intended for advanced undergraduate and postgraduate students in statistics and mathematics. In line with this objective we present thorough discussion of mathematical and statistical features of Bayesian analyses of dynamic models, with illustrations, examples and exercises in each Chapter.

Bayesian Inference of State Space Models

Download Bayesian Inference of State Space Models PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303076124X
Total Pages : 503 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Inference of State Space Models by : Kostas Triantafyllopoulos

Download or read book Bayesian Inference of State Space Models written by Kostas Triantafyllopoulos and published by Springer Nature. This book was released on 2021-11-12 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space models. The celebrated Kalman filter, with its numerous extensions, takes centre stage in the book. Univariate and multivariate models, linear Gaussian, non-linear and non-Gaussian models are discussed with applications to signal processing, environmetrics, economics and systems engineering. Over the past years there has been a growing literature on Bayesian inference of state space models, focusing on multivariate models as well as on non-linear and non-Gaussian models. The availability of time series data in many fields of science and industry on the one hand, and the development of low-cost computational capabilities on the other, have resulted in a wealth of statistical methods aimed at parameter estimation and forecasting. This book brings together many of these methods, presenting an accessible and comprehensive introduction to state space models. A number of data sets from different disciplines are used to illustrate the methods and show how they are applied in practice. The R package BTSA, created for the book, includes many of the algorithms and examples presented. The book is essentially self-contained and includes a chapter summarising the prerequisites in undergraduate linear algebra, probability and statistics. An up-to-date and complete account of state space methods, illustrated by real-life data sets and R code, this textbook will appeal to a wide range of students and scientists, notably in the disciplines of statistics, systems engineering, signal processing, data science, finance and econometrics. With numerous exercises in each chapter, and prerequisite knowledge conveniently recalled, it is suitable for upper undergraduate and graduate courses.

Dynamic Mode Decomposition

Download Dynamic Mode Decomposition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974496
Total Pages : 241 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Mode Decomposition by : J. Nathan Kutz

Download or read book Dynamic Mode Decomposition written by J. Nathan Kutz and published by SIAM. This book was released on 2016-11-23 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Statistical Methods for Modeling Human Dynamics

Download Statistical Methods for Modeling Human Dynamics PDF Online Free

Author :
Publisher : Taylor & Francis
ISBN 13 : 1135262594
Total Pages : 445 pages
Book Rating : 4.1/5 (352 download)

DOWNLOAD NOW!


Book Synopsis Statistical Methods for Modeling Human Dynamics by : Sy-Miin Chow

Download or read book Statistical Methods for Modeling Human Dynamics written by Sy-Miin Chow and published by Taylor & Francis. This book was released on 2011-02-25 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary volume features contributions from researchers in the fields of psychology, neuroscience, statistics, computer science, and physics. State-of-the-art techniques and applications used to analyze data obtained from studies in cognition, emotion, and electrophysiology are reviewed along with techniques for modeling in real time and for examining lifespan cognitive changes, for conceptualizing change using item response, nonparametric and hierarchical models, and control theory-inspired techniques for deriving diagnoses in medical and psychotherapeutic settings. The syntax for running the analyses presented in the book is provided on the Psychology Press site. Most of the programs are written in R while others are for Matlab, SAS, Win-BUGS, and DyFA. Readers will appreciate a review of the latest methodological techniques developed in the last few years. Highlights include an examination of: Statistical and mathematical modeling techniques for the analysis of brain imaging such as EEGs, fMRIs, and other neuroscience data Dynamic modeling techniques for intensive repeated measurement data Panel modeling techniques for fewer time points data State-space modeling techniques for psychological data Techniques used to analyze reaction time data. Each chapter features an introductory overview of the techniques needed to understand the chapter, a summary, and numerous examples. Each self-contained chapter can be read on its own and in any order. Divided into three major sections, the book examines techniques for examining within-person derivations in change patterns, intra-individual change, and inter-individual differences in change and interpersonal dynamics. Intended for advanced students and researchers, this book will appeal to those interested in applying state-of-the-art dynamic modeling techniques to the the study of neurological, developmental, cognitive, and social/personality psychology, as well as neuroscience, computer science, and engineering.

Regression Models for Time Series Analysis

Download Regression Models for Time Series Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471461687
Total Pages : 361 pages
Book Rating : 4.4/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Regression Models for Time Series Analysis by : Benjamin Kedem

Download or read book Regression Models for Time Series Analysis written by Benjamin Kedem and published by John Wiley & Sons. This book was released on 2005-03-11 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough review of the most current regression methods in time series analysis Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis. Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data. The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements. Notably, the book covers: * Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling * Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm * Prediction and interpolation * Stationary processes

Bayesian Statistics 6

Download Bayesian Statistics 6 PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 9780198504856
Total Pages : 886 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics 6 by : J. M. Bernardo

Download or read book Bayesian Statistics 6 written by J. M. Bernardo and published by Oxford University Press. This book was released on 1999-08-12 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.

The Art and Science of Econometrics

Download The Art and Science of Econometrics PDF Online Free

Author :
Publisher : Taylor & Francis
ISBN 13 : 1000580229
Total Pages : 249 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis The Art and Science of Econometrics by : Ping Zong

Download or read book The Art and Science of Econometrics written by Ping Zong and published by Taylor & Francis. This book was released on 2022-05-02 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today econometrics has been widely applied in the empirical study of economics. As an empirical science, econometrics uses rigorous mathematical and statistical methods for economic problems. Understanding the methodologies of both econometrics and statistics is a crucial departure for econometrics. The primary focus of this book is to provide an understanding of statistical properties behind econometric methods. Following the introduction in Chapter 1, Chapter 2 provides the methodological review of both econometrics and statistics in different periods since the 1930s. Chapters 3 and 4 explain the underlying theoretical methodologies for estimated equations in the simple regression and multiple regression models and discuss the debates about p-values in particular. This part of the book offers the reader a richer understanding of the methods of statistics behind the methodology of econometrics. Chapters 5–9 of the book are focused on the discussion of regression models using time series data, traditional causal econometric models, and the latest statistical techniques. By concentrating on dynamic structural linear models like state-space models and the Bayesian approach, the book alludes to the fact that this methodological study is not only a science but also an art. This work serves as a handy reference book for anyone interested in econometrics, particularly in relevance to students and academic and business researchers in all quantitative analysis fields.

The Analysis of Time Series

Download The Analysis of Time Series PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498795641
Total Pages : 398 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis The Analysis of Time Series by : Chris Chatfield

Download or read book The Analysis of Time Series written by Chris Chatfield and published by CRC Press. This book was released on 2019-04-25 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of this classic title, now in its seventh edition, presents a balanced and comprehensive introduction to the theory, implementation, and practice of time series analysis. The book covers a wide range of topics, including ARIMA models, forecasting methods, spectral analysis, linear systems, state-space models, the Kalman filters, nonlinear models, volatility models, and multivariate models. It also presents many examples and implementations of time series models and methods to reflect advances in the field. Highlights of the seventh edition: A new chapter on univariate volatility models A revised chapter on linear time series models A new section on multivariate volatility models A new section on regime switching models Many new worked examples, with R code integrated into the text The book can be used as a textbook for an undergraduate or a graduate level time series course in statistics. The book does not assume many prerequisites in probability and statistics, so it is also intended for students and data analysts in engineering, economics, and finance.

Time Series and Dynamic Models

Download Time Series and Dynamic Models PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521411462
Total Pages : 692 pages
Book Rating : 4.4/5 (114 download)

DOWNLOAD NOW!


Book Synopsis Time Series and Dynamic Models by : Christian Gourieroux

Download or read book Time Series and Dynamic Models written by Christian Gourieroux and published by Cambridge University Press. This book was released on 1997 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book Christian Gourieroux and Alain Monfort provide an up-to-date and comprehensive analysis of modern time series econometrics. They have succeeded in synthesising in an organised and integrated way a broad and diverse literature. While the book does not assume a deep knowledge of economics, one of its most attractive features is the close attention it pays to economic models and phenomena throughout. The coverage represents a major reference tool for graduate students, researchers and applied economists. The book is divided into four sections. Section one gives a detailed treatment of classical seasonal adjustment or smoothing methods. Section two provides a thorough coverage of various mathematical tools. Section three is the heart of the book, and is devoted to a range of important topics including causality, exogeneity shocks, multipliers, cointegration and fractionally integrated models. The final section describes the main contribution of filtering and smoothing theory to time series econometric problems.

Maximum Entropy and Bayesian Methods

Download Maximum Entropy and Bayesian Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401154309
Total Pages : 479 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Maximum Entropy and Bayesian Methods by : Kenneth M. Hanson

Download or read book Maximum Entropy and Bayesian Methods written by Kenneth M. Hanson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods, Santa Fe, New Mexico, USA, 1995

Modelling Longitudinal and Spatially Correlated Data

Download Modelling Longitudinal and Spatially Correlated Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461206995
Total Pages : 404 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Modelling Longitudinal and Spatially Correlated Data by : Timothy G. Gregoire

Download or read book Modelling Longitudinal and Spatially Correlated Data written by Timothy G. Gregoire and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Correlated data arise in numerous contexts across a wide spectrum of subject-matter disciplines. Modeling such data present special challenges and opportunities that have received increasing scrutiny by the statistical community in recent years. In October 1996 a group of 210 statisticians and other scientists assembled on the small island of Nantucket, U. S. A. , to present and discuss new developments relating to Modelling Longitudinal and Spatially Correlated Data: Methods, Applications, and Future Direc tions. Its purpose was to provide a cross-disciplinary forum to explore the commonalities and meaningful differences in the source and treatment of such data. This volume is a compilation of some of the important invited and volunteered presentations made during that conference. The three days and evenings of oral and displayed presentations were arranged into six broad thematic areas. The session themes, the invited speakers and the topics they addressed were as follows: • Generalized Linear Models: Peter McCullagh-"Residual Likelihood in Linear and Generalized Linear Models" • Longitudinal Data Analysis: Nan Laird-"Using the General Linear Mixed Model to Analyze Unbalanced Repeated Measures and Longi tudinal Data" • Spatio---Temporal Processes: David R. Brillinger-"Statistical Analy sis of the Tracks of Moving Particles" • Spatial Data Analysis: Noel A. Cressie-"Statistical Models for Lat tice Data" • Modelling Messy Data: Raymond J. Carroll-"Some Results on Gen eralized Linear Mixed Models with Measurement Error in Covariates" • Future Directions: Peter J.

Time Series Modeling of Neuroscience Data

Download Time Series Modeling of Neuroscience Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420094610
Total Pages : 561 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Time Series Modeling of Neuroscience Data by : Tohru Ozaki

Download or read book Time Series Modeling of Neuroscience Data written by Tohru Ozaki and published by CRC Press. This book was released on 2012-01-26 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in brain science measurement technology have given researchers access to very large-scale time series data such as EEG/MEG data (20 to 100 dimensional) and fMRI (140,000 dimensional) data. To analyze such massive data, efficient computational and statistical methods are required.Time Series Modeling of Neuroscience Data shows how to

Bayesian Thinking, Modeling and Computation

Download Bayesian Thinking, Modeling and Computation PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080461174
Total Pages : 1062 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Thinking, Modeling and Computation by :

Download or read book Bayesian Thinking, Modeling and Computation written by and published by Elsevier. This book was released on 2005-11-29 with total page 1062 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics

Bayesian Statistical Modelling

Download Bayesian Statistical Modelling PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470035935
Total Pages : 596 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistical Modelling by : Peter Congdon

Download or read book Bayesian Statistical Modelling written by Peter Congdon and published by John Wiley & Sons. This book was released on 2007-04-04 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology