Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Data Science With Matlab
Download Data Science With Matlab full books in PDF, epub, and Kindle. Read online Data Science With Matlab ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Fundamentals of Data Science with MATLAB by : Arash Karimpour
Download or read book Fundamentals of Data Science with MATLAB written by Arash Karimpour and published by . This book was released on 2020-07-31 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Exploratory Data Analysis with MATLAB by : Wendy L. Martinez
Download or read book Exploratory Data Analysis with MATLAB written by Wendy L. Martinez and published by CRC Press. This book was released on 2017-08-07 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data
Book Synopsis Environmental Data Analysis with MatLab by : William Menke
Download or read book Environmental Data Analysis with MatLab written by William Menke and published by Elsevier. This book was released on 2011-09-02 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Environmental Data Analysis with MatLab" is for students and researchers working to analyze real data sets in the environmental sciences. One only has to consider the global warming debate to realize how critically important it is to be able to derive clear conclusions from often-noisy data drawn from a broad range of sources. This book teaches the basics of the underlying theory of data analysis, and then reinforces that knowledge with carefully chosen, realistic scenarios. MatLab, a commercial data processing environment, is used in these scenarios; significant content is devoted to teaching how it can be effectively used in an environmental data analysis setting. The book, though written in a self-contained way, is supplemented with data sets and MatLab scripts that can be used as a data analysis tutorial. It is well written and outlines a clear learning path for researchers and students. It uses real world environmental examples and case studies. It has MatLab software for application in a readily-available software environment. Homework problems help user follow up upon case studies with homework that expands them.
Book Synopsis Neural Data Science by : Erik Lee Nylen
Download or read book Neural Data Science written by Erik Lee Nylen and published by Academic Press. This book was released on 2017-02-24 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Primer with MATLAB® and PythonTM present important information on the emergence of the use of Python, a more general purpose option to MATLAB, the preferred computation language for scientific computing and analysis in neuroscience. This book addresses the snake in the room by providing a beginner's introduction to the principles of computation and data analysis in neuroscience, using both Python and MATLAB, giving readers the ability to transcend platform tribalism and enable coding versatility. - Includes discussions of both MATLAB and Python in parallel - Introduces the canonical data analysis cascade, standardizing the data analysis flow - Presents tactics that strategically, tactically, and algorithmically help improve the organization of code
Book Synopsis Matlab: Data Analysis And Visualization by : Antonio Siciliano
Download or read book Matlab: Data Analysis And Visualization written by Antonio Siciliano and published by World Scientific Publishing Company. This book was released on 2008-10-20 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATLAB is currently the language of technical computing most known and used in academia, industry and services. It is composed of a set of tools and a very large number of functions, graphics objects with associated properties and operators.The book begins by looking at the main tools, in particular the Desktop, the Command and History Window, the Editor and the Help Browser. The selected number of functions, graphics objects, related properties and operators, considered fundamental in MATLAB, is a unique and remarkable feature of this book. These basic elements are minutely treated both formally and through examples.The arrangement of every data type as an array is another prominent emphasis of the book. Numerical data used in advanced mathematics usually defined as vectors or matrices are only one example. Others include logical values, strings of characters, dates, images, etc.Standard programming structures, like the many patterns of user functions and of the flow controls, are highlighted.The basic elements of data visualization — the main graphics objects and their properties — are also carefully examined.
Book Synopsis Data Analysis in the Earth Sciences Using Matlab® by : Gerard V. Middleton
Download or read book Data Analysis in the Earth Sciences Using Matlab® written by Gerard V. Middleton and published by . This book was released on 2000 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring the application of MATLAB to the various earth sciences, this text presents an integrated, step-by-step introduction to data analysis and the use of MATLAB.
Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton
Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Book Synopsis Measurement, Data Analysis, and Sensor Fundamentals for Engineering and Science by : Patrick F. Dunn
Download or read book Measurement, Data Analysis, and Sensor Fundamentals for Engineering and Science written by Patrick F. Dunn and published by CRC Press. This book was released on 2019-02-20 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: A combination of two texts authored by Patrick Dunn, this set covers sensor technology as well as basic measurement and data analysis subjects, a combination not covered together in other references. Written for junior-level mechanical and aerospace engineering students, the topic coverage allows for flexible approaches to using the combination book in courses. MATLAB® applications are included in all sections of the combination, and concise, applied coverage of sensor technology is offered. Numerous chapter examples and problems are included, with complete solutions available.
Book Synopsis MATLAB® Recipes for Earth Sciences by : Martin H. Trauth
Download or read book MATLAB® Recipes for Earth Sciences written by Martin H. Trauth and published by Springer Science & Business Media. This book was released on 2007 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces methods of data analysis in geosciences using MATLAB such as basic statistics for univariate, bivariate and multivariate datasets, jackknife and bootstrap resampling schemes, processing of digital elevation models, gridding and contouring, geostatistics and kriging, processing and georeferencing of satellite images, digitizing from the screen, linear and nonlinear time-series analysis and the application of linear time-invariant and adaptive filters. Includes a brief description of each method and numerous examples demonstrating how MATLAB can be used on data sets from earth sciences.
Book Synopsis Practical Data Analysis in Chemistry by : Marcel Maeder
Download or read book Practical Data Analysis in Chemistry written by Marcel Maeder and published by Elsevier. This book was released on 2007-08-10 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of modern instruments are computerised and provide incredible amounts of data. Methods that take advantage of the flood of data are now available; importantly they do not emulate 'graph paper analyses' on the computer. Modern computational methods are able to give us insights into data, but analysis or data fitting in chemistry requires the quantitative understanding of chemical processes. The results of this analysis allows the modelling and prediction of processes under new conditions, therefore saving on extensive experimentation. Practical Data Analysis in Chemistry exemplifies every aspect of theory applicable to data analysis using a short program in a Matlab or Excel spreadsheet, enabling the reader to study the programs, play with them and observe what happens. Suitable data are generated for each example in short routines, this ensuring a clear understanding of the data structure. Chapter 2 includes a brief introduction to matrix algebra and its implementation in Matlab and Excel while Chapter 3 covers the theory required for the modelling of chemical processes. This is followed by an introduction to linear and non-linear least-squares fitting, each demonstrated with typical applications. Finally Chapter 5 comprises a collection of several methods for model-free data analyses.* Includes a solid introduction to the simulation of equilibrium processes and the simulation of complex kinetic processes.* Provides examples of routines that are easily adapted to the processes investigated by the reader* 'Model-based' analysis (linear and non-linear regression) and 'model-free' analysis are covered
Book Synopsis Data Analysis in Sport by : Peter O'Donoghue
Download or read book Data Analysis in Sport written by Peter O'Donoghue and published by Routledge. This book was released on 2014-10-24 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making sense of sports performance data can be a challenging task but is nevertheless an essential part of performance analysis investigations. Focusing on techniques used in the analysis of sport performance, this book introduces the fundamental principles of data analysis, explores the most important tools used in data analysis, and offers guidance on the presentation of results. The book covers key topics such as: The purpose of data analysis, from statistical analysis to algorithmic processing Commercial packages for performance and data analysis, including Focus, Sportscode, Dartfish, Prozone, Excel, SPSS and Matlab Effective use of statistical procedures in sport performance analysis Analysing data from manual notation systems, player tracking systems and computerized match analysis systems Creating visually appealing ‘dashboard’ interfaces for presenting data Assessing reliability. The book includes worked examples from real sport, offering clear guidance to the reader and bringing the subject to life. This book is invaluable reading for any student, researcher or analyst working in sport performance or undertaking a sport-related research project or methods course
Book Synopsis MATLAB for Machine Learning by : Giuseppe Ciaburro
Download or read book MATLAB for Machine Learning written by Giuseppe Ciaburro and published by Packt Publishing Ltd. This book was released on 2017-08-28 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.
Book Synopsis Functional Data Analysis with R and MATLAB by : James Ramsay
Download or read book Functional Data Analysis with R and MATLAB written by James Ramsay and published by Springer Science & Business Media. This book was released on 2009-06-29 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems
Download or read book MATLAB Deep Learning written by Phil Kim and published by Apress. This book was released on 2017-06-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.
Book Synopsis MATLAB for Neuroscientists by : Pascal Wallisch
Download or read book MATLAB for Neuroscientists written by Pascal Wallisch and published by Academic Press. This book was released on 2014-01-09 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. - The first complete volume on MATLAB focusing on neuroscience and psychology applications - Problem-based approach with many examples from neuroscience and cognitive psychology using real data - Illustrated in full color throughout - Careful tutorial approach, by authors who are award-winning educators with strong teaching experience
Book Synopsis Spatiotemporal Data Analysis by : Gidon Eshel
Download or read book Spatiotemporal Data Analysis written by Gidon Eshel and published by Princeton University Press. This book was released on 2012 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: How do we study the storm's mutation into a deadly twister? Avian flu cases are reported in China.
Book Synopsis Statistics in MATLAB by : MoonJung Cho
Download or read book Statistics in MATLAB written by MoonJung Cho and published by CRC Press. This book was released on 2014-12-15 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer provides an accessible introduction to MATLAB version 8 and its extensive functionality for statistics. Fulfilling the need for a practical user's guide, the book covers capabilities in the main MATLAB package, the Statistics Toolbox, and the student version of MATLAB, presenting examples of how MATLAB can be used to analyze data. It explains how to determine what method should be used for analysis, and includes figures, visual aids, and access to a companion website with data sets and additional examples.