Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Data Modeling For The Sciences
Download Data Modeling For The Sciences full books in PDF, epub, and Kindle. Read online Data Modeling For The Sciences ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Ordinal Data Modeling by : Valen E. Johnson
Download or read book Ordinal Data Modeling written by Valen E. Johnson and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinal Data Modeling is a comprehensive treatment of ordinal data models from both likelihood and Bayesian perspectives. A unique feature of this text is its emphasis on applications. All models developed in the book are motivated by real datasets, and considerable attention is devoted to the description of diagnostic plots and residual analyses. Software and datasets used for all analyses described in the text are available on websites listed in the preface.
Download or read book Mobility Data written by Chiara Renso and published by Cambridge University Press. This book was released on 2013-10-14 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mobility of people and goods is essential in the global economy. The ability to track the routes and patterns associated with this mobility offers unprecedented opportunities for developing new, smarter applications in different domains. Much of the current research is devoted to developing concepts, models, and tools to comprehend mobility data and make it manageable for these applications. This book surveys the myriad facets of mobility data, from spatio-temporal data modeling, to data aggregation and warehousing, to data analysis, with a specific focus on monitoring people in motion (drivers, airplane passengers, crowds, and even animals in the wild). Written by a renowned group of worldwide experts, it presents a consistent framework that facilitates understanding of all these different facets, from basic definitions to state-of-the-art concepts and techniques, offering both researchers and professionals a thorough understanding of the applications and opportunities made possible by the development of mobility data.
Book Synopsis Data Modeling for the Sciences by : Steve Pressé
Download or read book Data Modeling for the Sciences written by Steve Pressé and published by Cambridge University Press. This book was released on 2023-07-31 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained and accessible guide to probabilistic data modeling, ideal for students and researchers in the natural sciences.
Book Synopsis Data Modeling Essentials by : Graeme Simsion
Download or read book Data Modeling Essentials written by Graeme Simsion and published by Elsevier. This book was released on 2004-12-03 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Modeling Essentials, Third Edition, covers the basics of data modeling while focusing on developing a facility in techniques, rather than a simple familiarization with "the rules". In order to enable students to apply the basics of data modeling to real models, the book addresses the realities of developing systems in real-world situations by assessing the merits of a variety of possible solutions as well as using language and diagramming methods that represent industry practice. This revised edition has been given significantly expanded coverage and reorganized for greater reader comprehension even as it retains its distinctive hallmarks of readability and usefulness. Beginning with the basics, the book provides a thorough grounding in theory before guiding the reader through the various stages of applied data modeling and database design. Later chapters address advanced subjects, including business rules, data warehousing, enterprise-wide modeling and data management. It includes an entirely new section discussing the development of logical and physical modeling, along with new material describing a powerful technique for model verification. It also provides an excellent resource for additional lectures and exercises. This text is the ideal reference for data modelers, data architects, database designers, DBAs, and systems analysts, as well as undergraduate and graduate-level students looking for a real-world perspective. - Thorough coverage of the fundamentals and relevant theory - Recognition and support for the creative side of the process - Expanded coverage of applied data modeling includes new chapters on logical and physical database design - New material describing a powerful technique for model verification - Unique coverage of the practical and human aspects of modeling, such as working with business specialists, managing change, and resolving conflict
Book Synopsis Applied Data Analysis and Modeling for Energy Engineers and Scientists by : T. Agami Reddy
Download or read book Applied Data Analysis and Modeling for Energy Engineers and Scientists written by T. Agami Reddy and published by Springer Science & Business Media. This book was released on 2011-08-09 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Data Analysis and Modeling for Energy Engineers and Scientists fills an identified gap in engineering and science education and practice for both students and practitioners. It demonstrates how to apply concepts and methods learned in disparate courses such as mathematical modeling, probability,statistics, experimental design, regression, model building, optimization, risk analysis and decision-making to actual engineering processes and systems. The text provides a formal structure that offers a basic, broad and unified perspective,while imparting the knowledge, skills and confidence to work in data analysis and modeling. This volume uses numerous solved examples, published case studies from the author’s own research, and well-conceived problems in order to enhance comprehension levels among readers and their understanding of the “processes”along with the tools.
Book Synopsis Data-Driven Modeling & Scientific Computation by : Jose Nathan Kutz
Download or read book Data-Driven Modeling & Scientific Computation written by Jose Nathan Kutz and published by . This book was released on 2013-08-08 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Download or read book Modeling with Data written by Ben Klemens and published by Princeton University Press. This book was released on 2008-10-06 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods. Klemens's accessible survey describes these models in a unified and nontraditional manner, providing alternative ways of looking at statistical concepts that often befuddle students. The book includes nearly one hundred sample programs of all kinds. Links to these programs will be available on this page at a later date. Modeling with Data will interest anyone looking for a comprehensive guide to these powerful statistical tools, including researchers and graduate students in the social sciences, biology, engineering, economics, and applied mathematics.
Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton
Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Book Synopsis Hands-On Big Data Modeling by : James Lee
Download or read book Hands-On Big Data Modeling written by James Lee and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solve all big data problems by learning how to create efficient data models Key FeaturesCreate effective models that get the most out of big dataApply your knowledge to datasets from Twitter and weather data to learn big dataTackle different data modeling challenges with expert techniques presented in this bookBook Description Modeling and managing data is a central focus of all big data projects. In fact, a database is considered to be effective only if you have a logical and sophisticated data model. This book will help you develop practical skills in modeling your own big data projects and improve the performance of analytical queries for your specific business requirements. To start with, you’ll get a quick introduction to big data and understand the different data modeling and data management platforms for big data. Then you’ll work with structured and semi-structured data with the help of real-life examples. Once you’ve got to grips with the basics, you’ll use the SQL Developer Data Modeler to create your own data models containing different file types such as CSV, XML, and JSON. You’ll also learn to create graph data models and explore data modeling with streaming data using real-world datasets. By the end of this book, you’ll be able to design and develop efficient data models for varying data sizes easily and efficiently. What you will learnGet insights into big data and discover various data modelsExplore conceptual, logical, and big data modelsUnderstand how to model data containing different file typesRun through data modeling with examples of Twitter, Bitcoin, IMDB and weather data modelingCreate data models such as Graph Data and Vector SpaceModel structured and unstructured data using Python and RWho this book is for This book is great for programmers, geologists, biologists, and every professional who deals with spatial data. If you want to learn how to handle GIS, GPS, and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful.
Book Synopsis R for Data Science by : Hadley Wickham
Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Book Synopsis Conceptual Data Modeling and Database Design: A Fully Algorithmic Approach, Volume 1 by : Christian Mancas
Download or read book Conceptual Data Modeling and Database Design: A Fully Algorithmic Approach, Volume 1 written by Christian Mancas and published by CRC Press. This book was released on 2016-01-05 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book aims to provide both beginners and experts with a completely algorithmic approach to data analysis and conceptual modeling, database design, implementation, and tuning, starting from vague and incomplete customer requests and ending with IBM DB/2, Oracle, MySQL, MS SQL Server, or Access based software applications. A rich panoply of s
Book Synopsis Modeling Methods for Marine Science by : David M. Glover
Download or read book Modeling Methods for Marine Science written by David M. Glover and published by Cambridge University Press. This book was released on 2011-06-02 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced textbook on modeling, data analysis and numerical techniques for marine science has been developed from a course taught by the authors for many years at the Woods Hole Oceanographic Institute. The first part covers statistics: singular value decomposition, error propagation, least squares regression, principal component analysis, time series analysis and objective interpolation. The second part deals with modeling techniques: finite differences, stability analysis and optimization. The third part describes case studies of actual ocean models of ever increasing dimensionality and complexity, starting with zero-dimensional models and finishing with three-dimensional general circulation models. Throughout the book hands-on computational examples are introduced using the MATLAB programming language and the principles of scientific visualization are emphasised. Ideal as a textbook for advanced students of oceanography on courses in data analysis and numerical modeling, the book is also an invaluable resource for a broad range of scientists undertaking modeling in chemical, biological, geological and physical oceanography.
Book Synopsis Data Analysis for the Life Sciences with R by : Rafael A. Irizarry
Download or read book Data Analysis for the Life Sciences with R written by Rafael A. Irizarry and published by CRC Press. This book was released on 2016-10-04 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.
Book Synopsis Empirical Modeling and Data Analysis for Engineers and Applied Scientists by : Scott A. Pardo
Download or read book Empirical Modeling and Data Analysis for Engineers and Applied Scientists written by Scott A. Pardo and published by Springer. This book was released on 2016-07-19 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook teaches advanced undergraduate and first-year graduate students in Engineering and Applied Sciences to gather and analyze empirical observations (data) in order to aid in making design decisions. While science is about discovery, the primary paradigm of engineering and "applied science" is design. Scientists are in the discovery business and want, in general, to understand the natural world rather than to alter it. In contrast, engineers and applied scientists design products, processes, and solutions to problems. That said, statistics, as a discipline, is mostly oriented toward the discovery paradigm. Young engineers come out of their degree programs having taken courses such as "Statistics for Engineers and Scientists" without any clear idea as to how they can use statistical methods to help them design products or processes. Many seem to think that statistics is only useful for demonstrating that a device or process actually does what it was designed to do. Statistics courses emphasize creating predictive or classification models - predicting nature or classifying individuals, and statistics is often used to prove or disprove phenomena as opposed to aiding in the design of a product or process. In industry however, Chemical Engineers use designed experiments to optimize petroleum extraction; Manufacturing Engineers use experimental data to optimize machine operation; Industrial Engineers might use data to determine the optimal number of operators required in a manual assembly process. This text teaches engineering and applied science students to incorporate empirical investigation into such design processes. Much of the discussion in this book is about models, not whether the models truly represent reality but whether they adequately represent reality with respect to the problems at hand; many ideas focus on how to gather data in the most efficient way possible to construct adequate models. Includes chapters on subjects not often seen together in a single text (e.g., measurement systems, mixture experiments, logistic regression, Taguchi methods, simulation) Techniques and concepts introduced present a wide variety of design situations familiar to engineers and applied scientists and inspire incorporation of experimentation and empirical investigation into the design process. Software is integrally linked to statistical analyses with fully worked examples in each chapter; fully worked using several packages: SAS, R, JMP, Minitab, and MS Excel - also including discussion questions at the end of each chapter. The fundamental learning objective of this textbook is for the reader to understand how experimental data can be used to make design decisions and to be familiar with the most common types of experimental designs and analysis methods.
Author :National Academies of Sciences, Engineering, and Medicine Publisher :National Academies Press ISBN 13 :0309494141 Total Pages :109 pages Book Rating :4.3/5 (94 download)
Book Synopsis Enhancing Urban Sustainability with Data, Modeling, and Simulation by : National Academies of Sciences, Engineering, and Medicine
Download or read book Enhancing Urban Sustainability with Data, Modeling, and Simulation written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-09-24 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: On January 30-31, 2019 the Board on Mathematical Sciences and Analytics, in collaboration with the Board on Energy and Environmental Systems and the Computer Science and Telecommunications Board, convened a workshop in Washington, D.C. to explore the frontiers of mathematics and data science needs for sustainable urban communities. The workshop strengthened the emerging interdisciplinary network of practitioners, business leaders, government officials, nonprofit stakeholders, academics, and policy makers using data, modeling, and simulation for urban and community sustainability, and addressed common challenges that the community faces. Presentations highlighted urban sustainability research efforts and programs under way, including research into air quality, water management, waste disposal, and social equity and discussed promising urban sustainability research questions that improved use of big data, modeling, and simulation can help address. This publication summarizes the presentation and discussion of the workshop.
Book Synopsis Data Modeling and Database Design by : Narayan S. Umanath
Download or read book Data Modeling and Database Design written by Narayan S. Umanath and published by Cengage Learning. This book was released on 2014-06-18 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: DATA MODELING AND DATABASE DESIGN presents a conceptually complete coverage of indispensable topics that each MIS student should learn if that student takes only one database course. Database design and data modeling encompass the minimal set of topics addressing the core competency of knowledge students should acquire in the database area. The text, rich examples, and figures work together to cover material with a depth and precision that is not available in more introductory database books. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Book Synopsis Models and Modeling by : Myint Swe Khine
Download or read book Models and Modeling written by Myint Swe Khine and published by Springer Science & Business Media. This book was released on 2011-03-01 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The process of developing models, known as modeling, allows scientists to visualize difficult concepts, explain complex phenomena and clarify intricate theories. In recent years, science educators have greatly increased their use of modeling in teaching, especially real-time dynamic modeling, which is central to a scientific investigation. Modeling in science teaching is being used in an array of fields, everything from primary sciences to tertiary chemistry to college physics, and it is sure to play an increasing role in the future of education. Models and Modeling: Cognitive Tools for Scientific Enquiry is a comprehensive introduction to the use of models and modeling in science education. It identifies and describes many different modeling tools and presents recent applications of modeling as a cognitive tool for scientific enquiry.