Data Engineering for AI/ML Pipelines

Download Data Engineering for AI/ML Pipelines PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 9365899036
Total Pages : 316 pages
Book Rating : 4.3/5 (658 download)

DOWNLOAD NOW!


Book Synopsis Data Engineering for AI/ML Pipelines by : Venkata Karthik Penikalapati

Download or read book Data Engineering for AI/ML Pipelines written by Venkata Karthik Penikalapati and published by BPB Publications. This book was released on 2024-10-18 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: DESCRIPTION Data engineering is the art of building and managing data pipelines that enable efficient data flow for AI/ML projects. This book serves as a comprehensive guide to data engineering for AI/ML systems, equipping you with the knowledge and skills to create robust and scalable data infrastructure. This book covers everything from foundational concepts to advanced techniques. It begins by introducing the role of data engineering in AI/ML, followed by exploring the lifecycle of data, from data generation and collection to storage and management. Readers will learn how to design robust data pipelines, transform data, and deploy AI/ML models effectively for real-world applications. The book also explains security, privacy, and compliance, ensuring responsible data management. Finally, it explores future trends, including automation, real-time data processing, and advanced architectures, providing a forward-looking perspective on the evolution of data engineering. By the end of this book, you will have a deep understanding of the principles and practices of data engineering for AI/ML. You will be able to design and implement efficient data pipelines, select appropriate technologies, ensure data quality and security, and leverage data for building successful AI/ML models. KEY FEATURES ● Comprehensive guide to building scalable AI/ML data engineering pipelines. ● Practical insights into data collection, storage, processing, and analysis. ● Emphasis on data security, privacy, and emerging trends in AI/ML. WHAT YOU WILL LEARN ● Architect scalable data solutions for AI/ML-driven applications. ● Design and implement efficient data pipelines for machine learning. ● Ensure data security and privacy in AI/ML systems. ● Leverage emerging technologies in data engineering for AI/ML. ● Optimize data transformation processes for enhanced model performance. WHO THIS BOOK IS FOR This book is ideal for software engineers, ML practitioners, IT professionals, and students wanting to master data pipelines for AI/ML. It is also valuable for developers and system architects aiming to expand their knowledge of data-driven technologies. TABLE OF CONTENTS 1. Introduction to Data Engineering for AI/ML 2. Lifecycle of AI/ML Data Engineering 3. Architecting Data Solutions for AI/ML 4. Technology Selection in AI/ML Data Engineering 5. Data Generation and Collection for AI/ML 6. Data Storage and Management in AI/ML 7. Data Ingestion and Preparation for ML 8. Transforming and Processing Data for AI/ML 9. Model Deployment and Data Serving 10. Security and Privacy in AI/ML Data Engineering 11. Emerging Trends and Future Direction

Building Machine Learning Pipelines

Download Building Machine Learning Pipelines PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492053147
Total Pages : 398 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Building Machine Learning Pipelines by : Hannes Hapke

Download or read book Building Machine Learning Pipelines written by Hannes Hapke and published by "O'Reilly Media, Inc.". This book was released on 2020-07-13 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques

Engineering MLOps

Download Engineering MLOps PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800566328
Total Pages : 370 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Engineering MLOps by : Emmanuel Raj

Download or read book Engineering MLOps written by Emmanuel Raj and published by Packt Publishing Ltd. This book was released on 2021-04-19 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get up and running with machine learning life cycle management and implement MLOps in your organization Key FeaturesBecome well-versed with MLOps techniques to monitor the quality of machine learning models in productionExplore a monitoring framework for ML models in production and learn about end-to-end traceability for deployed modelsPerform CI/CD to automate new implementations in ML pipelinesBook Description Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you'll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You'll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you'll apply the knowledge you've gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization. What you will learnFormulate data governance strategies and pipelines for ML training and deploymentGet to grips with implementing ML pipelines, CI/CD pipelines, and ML monitoring pipelinesDesign a robust and scalable microservice and API for test and production environmentsCurate your custom CD processes for related use cases and organizationsMonitor ML models, including monitoring data drift, model drift, and application performanceBuild and maintain automated ML systemsWho this book is for This MLOps book is for data scientists, software engineers, DevOps engineers, machine learning engineers, and business and technology leaders who want to build, deploy, and maintain ML systems in production using MLOps principles and techniques. Basic knowledge of machine learning is necessary to get started with this book.

Data Science on AWS

Download Data Science on AWS PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492079367
Total Pages : 524 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Data Science on AWS by : Chris Fregly

Download or read book Data Science on AWS written by Chris Fregly and published by "O'Reilly Media, Inc.". This book was released on 2021-04-07 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more

Machine Learning Design Patterns

Download Machine Learning Design Patterns PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1098115759
Total Pages : 408 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Design Patterns by : Valliappa Lakshmanan

Download or read book Machine Learning Design Patterns written by Valliappa Lakshmanan and published by O'Reilly Media. This book was released on 2020-10-15 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly

Data Engineering with Apache Spark, Delta Lake, and Lakehouse

Download Data Engineering with Apache Spark, Delta Lake, and Lakehouse PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801074321
Total Pages : 480 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Data Engineering with Apache Spark, Delta Lake, and Lakehouse by : Manoj Kukreja

Download or read book Data Engineering with Apache Spark, Delta Lake, and Lakehouse written by Manoj Kukreja and published by Packt Publishing Ltd. This book was released on 2021-10-22 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.

Introducing MLOps

Download Introducing MLOps PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098116429
Total Pages : 171 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Introducing MLOps by : Mark Treveil

Download or read book Introducing MLOps written by Mark Treveil and published by "O'Reilly Media, Inc.". This book was released on 2020-11-30 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized

Mastering Data Engineering and Analytics with Databricks

Download Mastering Data Engineering and Analytics with Databricks PDF Online Free

Author :
Publisher : Orange Education Pvt Ltd
ISBN 13 : 8196862040
Total Pages : 567 pages
Book Rating : 4.1/5 (968 download)

DOWNLOAD NOW!


Book Synopsis Mastering Data Engineering and Analytics with Databricks by : Manoj Kumar

Download or read book Mastering Data Engineering and Analytics with Databricks written by Manoj Kumar and published by Orange Education Pvt Ltd. This book was released on 2024-09-30 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: TAGLINE Master Databricks to Transform Data into Strategic Insights for Tomorrow’s Business Challenges KEY FEATURES ● Combines theory with practical steps to master Databricks, Delta Lake, and MLflow. ● Real-world examples from FMCG and CPG sectors demonstrate Databricks in action. ● Covers real-time data processing, ML integration, and CI/CD for scalable pipelines. ● Offers proven strategies to optimize workflows and avoid common pitfalls. DESCRIPTION In today’s data-driven world, mastering data engineering is crucial for driving innovation and delivering real business impact. Databricks is one of the most powerful platforms which unifies data, analytics and AI requirements of numerous organizations worldwide. Mastering Data Engineering and Analytics with Databricks goes beyond the basics, offering a hands-on, practical approach tailored for professionals eager to excel in the evolving landscape of data engineering and analytics. This book uniquely blends foundational knowledge with advanced applications, equipping readers with the expertise to build, optimize, and scale data pipelines that meet real-world business needs. With a focus on actionable learning, it delves into complex workflows, including real-time data processing, advanced optimization with Delta Lake, and seamless ML integration with MLflow—skills critical for today’s data professionals. Drawing from real-world case studies in FMCG and CPG industries, this book not only teaches you how to implement Databricks solutions but also provides strategic insights into tackling industry-specific challenges. From setting up your environment to deploying CI/CD pipelines, you'll gain a competitive edge by mastering techniques that are directly applicable to your organization’s data strategy. By the end, you’ll not just understand Databricks—you’ll command it, positioning yourself as a leader in the data engineering space. WHAT WILL YOU LEARN ● Design and implement scalable, high-performance data pipelines using Databricks for various business use cases. ● Optimize query performance and efficiently manage cloud resources for cost-effective data processing. ● Seamlessly integrate machine learning models into your data engineering workflows for smarter automation. ● Build and deploy real-time data processing solutions for timely and actionable insights. ● Develop reliable and fault-tolerant Delta Lake architectures to support efficient data lakes at scale. WHO IS THIS BOOK FOR? This book is designed for data engineering students, aspiring data engineers, experienced data professionals, cloud data architects, data scientists and analysts looking to expand their skill sets, as well as IT managers seeking to master data engineering and analytics with Databricks. A basic understanding of data engineering concepts, familiarity with data analytics, and some experience with cloud computing or programming languages such as Python or SQL will help readers fully benefit from the book’s content. TABLE OF CONTENTS SECTION 1 1. Introducing Data Engineering with Databricks 2. Setting Up a Databricks Environment for Data Engineering 3. Working with Databricks Utilities and Clusters SECTION 2 4. Extracting and Loading Data Using Databricks 5. Transforming Data with Databricks 6. Handling Streaming Data with Databricks 7. Creating Delta Live Tables 8. Data Partitioning and Shuffling 9. Performance Tuning and Best Practices 10. Workflow Management 11. Databricks SQL Warehouse 12. Data Storage and Unity Catalog 13. Monitoring Databricks Clusters and Jobs 14. Production Deployment Strategies 15. Maintaining Data Pipelines in Production 16. Managing Data Security and Governance 17. Real-World Data Engineering Use Cases with Databricks 18. AI and ML Essentials 19. Integrating Databricks with External Tools Index

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Feature Engineering for Machine Learning

Download Feature Engineering for Machine Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491953195
Total Pages : 218 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Feature Engineering for Machine Learning by : Alice Zheng

Download or read book Feature Engineering for Machine Learning written by Alice Zheng and published by "O'Reilly Media, Inc.". This book was released on 2018-03-23 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering. Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples. You’ll examine: Feature engineering for numeric data: filtering, binning, scaling, log transforms, and power transforms Natural text techniques: bag-of-words, n-grams, and phrase detection Frequency-based filtering and feature scaling for eliminating uninformative features Encoding techniques of categorical variables, including feature hashing and bin-counting Model-based feature engineering with principal component analysis The concept of model stacking, using k-means as a featurization technique Image feature extraction with manual and deep-learning techniques

Data Pipelines Pocket Reference

Download Data Pipelines Pocket Reference PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492087807
Total Pages : 277 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Data Pipelines Pocket Reference by : James Densmore

Download or read book Data Pipelines Pocket Reference written by James Densmore and published by O'Reilly Media. This book was released on 2021-02-10 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting

Performance Dashboards

Download Performance Dashboards PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471757659
Total Pages : 321 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Performance Dashboards by : Wayne W. Eckerson

Download or read book Performance Dashboards written by Wayne W. Eckerson and published by John Wiley & Sons. This book was released on 2005-10-27 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution.

Building Machine Learning Powered Applications

Download Building Machine Learning Powered Applications PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492045063
Total Pages : 243 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Building Machine Learning Powered Applications by : Emmanuel Ameisen

Download or read book Building Machine Learning Powered Applications written by Emmanuel Ameisen and published by "O'Reilly Media, Inc.". This book was released on 2020-01-21 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the skills necessary to design, build, and deploy applications powered by machine learning (ML). Through the course of this hands-on book, you’ll build an example ML-driven application from initial idea to deployed product. Data scientists, software engineers, and product managers—including experienced practitioners and novices alike—will learn the tools, best practices, and challenges involved in building a real-world ML application step by step. Author Emmanuel Ameisen, an experienced data scientist who led an AI education program, demonstrates practical ML concepts using code snippets, illustrations, screenshots, and interviews with industry leaders. Part I teaches you how to plan an ML application and measure success. Part II explains how to build a working ML model. Part III demonstrates ways to improve the model until it fulfills your original vision. Part IV covers deployment and monitoring strategies. This book will help you: Define your product goal and set up a machine learning problem Build your first end-to-end pipeline quickly and acquire an initial dataset Train and evaluate your ML models and address performance bottlenecks Deploy and monitor your models in a production environment

Data Science on the Google Cloud Platform

Download Data Science on the Google Cloud Platform PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491974532
Total Pages : 403 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Data Science on the Google Cloud Platform by : Valliappa Lakshmanan

Download or read book Data Science on the Google Cloud Platform written by Valliappa Lakshmanan and published by "O'Reilly Media, Inc.". This book was released on 2017-12-12 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines

AI-DRIVEN DATA ENGINEERING TRANSFORMING BIG DATA INTO ACTIONABLE INSIGHT

Download AI-DRIVEN DATA ENGINEERING TRANSFORMING BIG DATA INTO ACTIONABLE INSIGHT PDF Online Free

Author :
Publisher : JEC PUBLICATION
ISBN 13 : 9361758756
Total Pages : 237 pages
Book Rating : 4.3/5 (617 download)

DOWNLOAD NOW!


Book Synopsis AI-DRIVEN DATA ENGINEERING TRANSFORMING BIG DATA INTO ACTIONABLE INSIGHT by : Eswar Prasad Galla

Download or read book AI-DRIVEN DATA ENGINEERING TRANSFORMING BIG DATA INTO ACTIONABLE INSIGHT written by Eswar Prasad Galla and published by JEC PUBLICATION. This book was released on with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: .....

Operating AI

Download Operating AI PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119833213
Total Pages : 237 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Operating AI by : Ulrika Jagare

Download or read book Operating AI written by Ulrika Jagare and published by John Wiley & Sons. This book was released on 2022-04-19 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: A holistic and real-world approach to operationalizing artificial intelligence in your company In Operating AI, Director of Technology and Architecture at Ericsson AB, Ulrika Jägare, delivers an eye-opening new discussion of how to introduce your organization to artificial intelligence by balancing data engineering, model development, and AI operations. You'll learn the importance of embracing an AI operational mindset to successfully operate AI and lead AI initiatives through the entire lifecycle, including key areas such as; data mesh, data fabric, aspects of security, data privacy, data rights and IPR related to data and AI models. In the book, you’ll also discover: How to reduce the risk of entering bias in our artificial intelligence solutions and how to approach explainable AI (XAI) The importance of efficient and reproduceable data pipelines, including how to manage your company's data An operational perspective on the development of AI models using the MLOps (Machine Learning Operations) approach, including how to deploy, run and monitor models and ML pipelines in production using CI/CD/CT techniques, that generates value in the real world Key competences and toolsets in AI development, deployment and operations What to consider when operating different types of AI business models With a strong emphasis on deployment and operations of trustworthy and reliable AI solutions that operate well in the real world—and not just the lab—Operating AI is a must-read for business leaders looking for ways to operationalize an AI business model that actually makes money, from the concept phase to running in a live production environment.

Machine Learning Engineering in Action

Download Machine Learning Engineering in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638356580
Total Pages : 879 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Engineering in Action by : Ben Wilson

Download or read book Machine Learning Engineering in Action written by Ben Wilson and published by Simon and Schuster. This book was released on 2022-05-17 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt: Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production. In Machine Learning Engineering in Action, you will learn: Evaluating data science problems to find the most effective solution Scoping a machine learning project for usage expectations and budget Process techniques that minimize wasted effort and speed up production Assessing a project using standardized prototyping work and statistical validation Choosing the right technologies and tools for your project Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks. Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code. About the technology Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production. About the book Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects. What's inside Scoping a machine learning project for usage expectations and budget Choosing the right technologies for your design Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices About the reader For data scientists who know machine learning and the basics of object-oriented programming. About the author Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer.