The Statistical Physics of Data Assimilation and Machine Learning

Download The Statistical Physics of Data Assimilation and Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009021702
Total Pages : 208 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis The Statistical Physics of Data Assimilation and Machine Learning by : Henry D. I. Abarbanel

Download or read book The Statistical Physics of Data Assimilation and Machine Learning written by Henry D. I. Abarbanel and published by Cambridge University Press. This book was released on 2022-02-17 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data assimilation is a hugely important mathematical technique, relevant in fields as diverse as geophysics, data science, and neuroscience. This modern book provides an authoritative treatment of the field as it relates to several scientific disciplines, with a particular emphasis on recent developments from machine learning and its role in the optimisation of data assimilation. Underlying theory from statistical physics, such as path integrals and Monte Carlo methods, are developed in the text as a basis for data assimilation, and the author then explores examples from current multidisciplinary research such as the modelling of shallow water systems, ocean dynamics, and neuronal dynamics in the avian brain. The theory of data assimilation and machine learning is introduced in an accessible and unified manner, and the book is suitable for undergraduate and graduate students from science and engineering without specialized experience of statistical physics.

Data Assimilation and Control: Theory and Applications in Life Sciences

Download Data Assimilation and Control: Theory and Applications in Life Sciences PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889459853
Total Pages : 116 pages
Book Rating : 4.8/5 (894 download)

DOWNLOAD NOW!


Book Synopsis Data Assimilation and Control: Theory and Applications in Life Sciences by : Axel Hutt

Download or read book Data Assimilation and Control: Theory and Applications in Life Sciences written by Axel Hutt and published by Frontiers Media SA. This book was released on 2019-08-16 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The understanding of complex systems is a key element to predict and control the system’s dynamics. To gain deeper insights into the underlying actions of complex systems today, more and more data of diverse types are analyzed that mirror the systems dynamics, whereas system models are still hard to derive. Data assimilation merges both data and model to an optimal description of complex systems’ dynamics. The present eBook brings together both recent theoretical work in data assimilation and control and demonstrates applications in diverse research fields.

Sequential Monte Carlo Methods in Practice

Download Sequential Monte Carlo Methods in Practice PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475734379
Total Pages : 590 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Sequential Monte Carlo Methods in Practice by : Arnaud Doucet

Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Geospatial Technologies for Crops and Soils

Download Geospatial Technologies for Crops and Soils PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811568642
Total Pages : 528 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Geospatial Technologies for Crops and Soils by : Tarik Mitran

Download or read book Geospatial Technologies for Crops and Soils written by Tarik Mitran and published by Springer Nature. This book was released on 2020-10-24 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: The sustainable development of the agriculture sector is the only option to meet the demands of increased and economically viable production in a changing climate. This means there is a need to introduce the latest technologies to enhance production, and also help policymakers make decisions for the future. Geospatial technologies & tools, such as remote sensing, geographical information systems (GIS), global positioning systems (GPS), and mobile & web applications, provide unique capabilities to analyze multi-scale, multi-temporal datasets, and support decision-making in sustainable agriculture development and natural resources management. Further, the availability of reliable and timely geospatial information on natural resources and environmental conditions is essential for sustainable agricultural development and food security. Since remote sensing solutions are fast, non-destructive and have large spatial coverage, they can play a significant role in the identification, inventory, and mapping of land resources. Over the past four decades, remote sensing has proved to be a cost-effective and powerful tool to assess crop and soil properties in varying spatial and temporal scales using both visual and digital techniques. Satellite remote sensing coupled with GIS & mobile-app based positional information has emerged as an efficient tool for optimizing input resources, and minimizing cost of production and risk of biotic/ abiotic factors nature to promote sustainable agriculture. This book comprehensively documents the applications of space-based technologies for crop and soil assessments for the sustainable development of agriculture.

Data Assimilation

Download Data Assimilation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540383018
Total Pages : 285 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Data Assimilation by : Geir Evensen

Download or read book Data Assimilation written by Geir Evensen and published by Springer Science & Business Media. This book was released on 2006-12-22 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews popular data-assimilation methods, such as weak and strong constraint variational methods, ensemble filters and smoothers. The author shows how different methods can be derived from a common theoretical basis, as well as how they differ or are related to each other, and which properties characterize them, using several examples. Readers will appreciate the included introductory material and detailed derivations in the text, and a supplemental web site.

Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Download Accelerating Monte Carlo methods for Bayesian inference in dynamical models PDF Online Free

Author :
Publisher : Linköping University Electronic Press
ISBN 13 : 9176857972
Total Pages : 139 pages
Book Rating : 4.1/5 (768 download)

DOWNLOAD NOW!


Book Synopsis Accelerating Monte Carlo methods for Bayesian inference in dynamical models by : Johan Dahlin

Download or read book Accelerating Monte Carlo methods for Bayesian inference in dynamical models written by Johan Dahlin and published by Linköping University Electronic Press. This book was released on 2016-03-22 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.

Scientific and Technical Aerospace Reports

Download Scientific and Technical Aerospace Reports PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1460 pages
Book Rating : 4.:/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Scientific and Technical Aerospace Reports by :

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1991 with total page 1460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Monte Carlo Strategies in Scientific Computing

Download Monte Carlo Strategies in Scientific Computing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387763716
Total Pages : 350 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Monte Carlo Strategies in Scientific Computing by : Jun S. Liu

Download or read book Monte Carlo Strategies in Scientific Computing written by Jun S. Liu and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)

Download Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II) PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642350887
Total Pages : 736 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II) by : Seon Ki Park

Download or read book Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II) written by Seon Ki Park and published by Springer Science & Business Media. This book was released on 2013-05-22 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.

Data Assimilation for the Geosciences

Download Data Assimilation for the Geosciences PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128044845
Total Pages : 978 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Data Assimilation for the Geosciences by : Steven J. Fletcher

Download or read book Data Assimilation for the Geosciences written by Steven J. Fletcher and published by Elsevier. This book was released on 2017-03-10 with total page 978 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Assimilation for the Geosciences: From Theory to Application brings together all of the mathematical,statistical, and probability background knowledge needed to formulate data assimilation systems in one place. It includes practical exercises for understanding theoretical formulation and presents some aspects of coding the theory with a toy problem. The book also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to the atmosphere, oceans, as well as the land surface and other geophysical situations. It offers a comprehensive presentation of the subject, from basic principles to advanced methods, such as Particle Filters and Markov-Chain Monte-Carlo methods. Additionally, Data Assimilation for the Geosciences: From Theory to Application covers the applications of data assimilation techniques in various disciplines of the geosciences, making the book useful to students, teachers, and research scientists. Includes practical exercises, enabling readers to apply concepts in a theoretical formulation Offers explanations for how to code certain parts of the theory Presents a step-by-step guide on how, and why, data assimilation works and can be used

Data Assimilation: Methods, Algorithms, and Applications

Download Data Assimilation: Methods, Algorithms, and Applications PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974542
Total Pages : 310 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Data Assimilation: Methods, Algorithms, and Applications by : Mark Asch

Download or read book Data Assimilation: Methods, Algorithms, and Applications written by Mark Asch and published by SIAM. This book was released on 2016-12-29 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data assimilation is an approach that combines observations and model output, with the objective of improving the latter. This book places data assimilation into the broader context of inverse problems and the theory, methods, and algorithms that are used for their solution. It provides a framework for, and insight into, the inverse problem nature of data assimilation, emphasizing why and not just how. Methods and diagnostics are emphasized, enabling readers to readily apply them to their own field of study. Readers will find a comprehensive guide that is accessible to nonexperts; numerous examples and diverse applications from a broad range of domains, including geophysics and geophysical flows, environmental acoustics, medical imaging, mechanical and biomedical engineering, economics and finance, and traffic control and urban planning; and the latest methods for advanced data assimilation, combining variational and statistical approaches.

International Aerospace Abstracts

Download International Aerospace Abstracts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1048 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis International Aerospace Abstracts by :

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1999 with total page 1048 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Principles of Computational Modelling in Neuroscience

Download Principles of Computational Modelling in Neuroscience PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108483143
Total Pages : 553 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Principles of Computational Modelling in Neuroscience by : David Sterratt

Download or read book Principles of Computational Modelling in Neuroscience written by David Sterratt and published by Cambridge University Press. This book was released on 2023-10-05 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to use computational modelling techniques to understand the nervous system at all levels, from ion channels to networks.

Bayesian Forecasting and Dynamic Models

Download Bayesian Forecasting and Dynamic Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475793650
Total Pages : 720 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Forecasting and Dynamic Models by : Mike West

Download or read book Bayesian Forecasting and Dynamic Models written by Mike West and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we are concerned with Bayesian learning and forecast ing in dynamic environments. We describe the structure and theory of classes of dynamic models, and their uses in Bayesian forecasting. The principles, models and methods of Bayesian forecasting have been developed extensively during the last twenty years. This devel opment has involved thorough investigation of mathematical and sta tistical aspects of forecasting models and related techniques. With this has come experience with application in a variety of areas in commercial and industrial, scientific and socio-economic fields. In deed much of the technical development has been driven by the needs of forecasting practitioners. As a result, there now exists a relatively complete statistical and mathematical framework, although much of this is either not properly documented or not easily accessible. Our primary goals in writing this book have been to present our view of this approach to modelling and forecasting, and to provide a rea sonably complete text for advanced university students and research workers. The text is primarily intended for advanced undergraduate and postgraduate students in statistics and mathematics. In line with this objective we present thorough discussion of mathematical and statistical features of Bayesian analyses of dynamic models, with illustrations, examples and exercises in each Chapter.

Predicting the Future

Download Predicting the Future PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1461472180
Total Pages : 253 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Predicting the Future by : Henry Abarbanel

Download or read book Predicting the Future written by Henry Abarbanel and published by Springer. This book was released on 2013-06-12 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through the development of an exact path integral for use in transferring information from observations to a model of the observed system, the author provides a general framework for the discussion of model building and evaluation across disciplines. Through many illustrative examples drawn from models in neuroscience, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model’s consistency with observations is explored.

The BUGS Book

Download The BUGS Book PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466586664
Total Pages : 393 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis The BUGS Book by : David Lunn

Download or read book The BUGS Book written by David Lunn and published by CRC Press. This book was released on 2012-10-02 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents

Advances in Artificial Intelligence

Download Advances in Artificial Intelligence PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783030398774
Total Pages : 306 pages
Book Rating : 4.3/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Advances in Artificial Intelligence by : Yukio Ohsawa

Download or read book Advances in Artificial Intelligence written by Yukio Ohsawa and published by Springer. This book was released on 2020-02-04 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected and extended papers from the largest conference on artificial intelligence in Japan, which was expanded into an internationalized event for the first time in 2019: the 33rd Annual Conference of the Japanese Society for Artificial Intelligence (JSAI 2019), held on June 4–June 7, 2019 at TOKI MESSE in Niigata, Japan. The book’s content has been divided into six major sections, on (I) knowledge engineering, (II) agents, (III) education and culture, (IV) natural language processing, (V) machine learning and data mining, and (VI) cyber physics. Given its scope, the book offers a valuable reference guide for professionals, undergraduate and graduate students engaged in disciplines, fields, technologies, or philosophies relevant to AI, e.g., computer/data science, robotics, linguistics, and physics, introducing them to recent advances in this area and discussing the human society of tomorrow.