Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Critical Excitation Methods In Earthquake Engineering
Download Critical Excitation Methods In Earthquake Engineering full books in PDF, epub, and Kindle. Read online Critical Excitation Methods In Earthquake Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Critical Excitation Methods in Earthquake Engineering by : Izuru Takewaki
Download or read book Critical Excitation Methods in Earthquake Engineering written by Izuru Takewaki and published by Elsevier. This book was released on 2006-12-18 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the occurrence of earthquakes and their properties are very uncertain even with the present knowledge, it is too difficult to define reasonable design ground motions especially for important buildings. In the seismic resistant design of building structures, the concept of 'performance-based design' has become a new paradigm guaranteeing the maximum satisfaction of building owners. The quality and reliability of the performance-based design certainly depend on the scientific rationality of design ground motions. In order to overcome this problem, a new paradigm has to be posed. To the author's knowledge, the concept of 'critical excitation' and the structural design based upon this concept can become one of such new paradigms. This book introduces a new probabilistic and energy-based critical excitation approach to overcome several problems in the scientific and rational modelling of ground motions. The author hopes that this book will help the development of new seismic-resistant design methods of buildings for such unpredicted or unpredictable ground motions. - First comprehensive book for critical excitation methods - Including updated, cutting-edge research - Applicable to other worst-case analysis problems - Including comprehensive review of critical excitation methods - Including verification by comprehensive recorded ground motions
Book Synopsis Critical Excitation Methods in Earthquake Engineering by : Izuru Takewaki
Download or read book Critical Excitation Methods in Earthquake Engineering written by Izuru Takewaki and published by Butterworth-Heinemann. This book was released on 2013-06-03 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: After the March 11, 2011, earthquake in Japan, there is overwhelming interest in worst-case analysis, including the critical excitation method. Nowadays, seismic design of structures performed by any seismic code is based on resisting previous natural earthquakes. Critical Excitation Methods in Earthquake Engineering, Second Edition, develops a new framework for modeling design earthquake loads for inelastic structures. The Second Edition, includes three new chapters covering the critical excitation problem for multi-component input ground motions, and that for elastic-plastic structures in a more direct way are incorporated and discussed in more depth. Finally, the problem of earthquake resilience of super high-rise buildings is discussed from broader viewpoints. - Solves problems of earthquake resilience of super high-rise buildings - Three new chapters on critical excitation problem for multi-component input ground motions - Includes numerical examples of one and two-story models
Book Synopsis Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications by : Plevris, Vagelis
Download or read book Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications written by Plevris, Vagelis and published by IGI Global. This book was released on 2012-05-31 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Throughout the past few years, there has been extensive research done on structural design in terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.
Book Synopsis Design Optimization of Active and Passive Structural Control Systems by : Lagaros, Nikos D.
Download or read book Design Optimization of Active and Passive Structural Control Systems written by Lagaros, Nikos D. and published by IGI Global. This book was released on 2012-08-31 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A typical engineering task during the development of any system is, among others, to improve its performance in terms of cost and response. Improvements can be achieved either by simply using design rules based on the experience or in an automated way by using optimization methods that lead to optimum designs. Design Optimization of Active and Passive Structural Control Systems includes Earthquake Engineering and Tuned Mass Damper research topics into a volume taking advantage of the connecting link between them, which is optimization. This is a publication addressing the design optimization of active and passive control systems. This title is perfect for engineers, professionals, professors, and students alike, providing cutting edge research and applications.
Book Synopsis Modern Earthquake Engineering by : Junbo Jia
Download or read book Modern Earthquake Engineering written by Junbo Jia and published by Springer. This book was released on 2016-10-01 with total page 859 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.
Book Synopsis Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault or Long-Duration Ground Motions: Closed-Form Approach via Impulse Input by : Izuru Takewaki
Download or read book Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault or Long-Duration Ground Motions: Closed-Form Approach via Impulse Input written by Izuru Takewaki and published by Frontiers Media SA. This book was released on 2015-12-22 with total page 57 pages. Available in PDF, EPUB and Kindle. Book excerpt: The specialty section Earthquake Engineering is one branch of Frontiers in Built Environment and welcomes critical and in-depth submissions on earthquake ground motions and their effects on buildings and infrastructures. Manuscripts should yield new insights and ultimately contribute to a safer and more reliable design of building structures and infrastructures. The scope includes the characterization of earthquake ground motions (e.g. near-fault, far-fault, short-period, long-period), their underlying properties, their intrinsic relationship with structural responses, and the true behaviors of building structures and infrastructures under risky and uncertain ground motions. More specific topics include recorded ground motions, generated ground motions, response spectra, stochastic modeling of ground motion, critical excitation, geotechnical aspects, soil mechanics, soil liquefaction, soil-structure interactions, pile foundations, earthquake input energy, structural control, passive control, active control, base-isolation, steel structures, reinforced concrete structures, wood structures, building retrofit, structural optimization, uncertainty analysis, robustness analysis, and redundancy analysis. This eBook includes four original research papers, in addition to the Specialty Grand Challenge article, on the critical earthquake response of elastic-plastic structures under near-fault or long-duration ground motions which were published in the specialty section Earthquake Engineering. In the early stage of dynamic nonlinear response analysis of structures around 1960s, a simple hysteretic structural model and a simple sinusoidal earthquake ground motion input were dealt with together with random inputs. The steady-state response was tackled by an equivalent linearization method developed by Caughey, Iwan and others. In fact, the resonance plays a key role in the earthquake-resistant design and it has a strong effect even in case of near-fault ground motions. In order to draw the steady-state response curve and investigate the resonant property, two kinds of repetition have to be introduced. One is a cycle, for one forced input frequency, of the initial guess of the steady-state response amplitude, the construction of the equivalent linear model, the analysis of the steady-state response amplitude using the equivalent linear model and the update of the equivalent linear model based on the computed steady-state response amplitude. The other is the sweeping over a range of forced input frequencies. This process is quite tedious. Four original research papers included in this eBook propose a new approach to overcome this difficulty. Kojima and Takewaki demonstrated that the elastic-plastic response as continuation of free-vibrations under impulse input can be derived in a closed form by a sophisticated energy approach without solving directly the equations of motion as differential equations. While, as pointed out above, the approach based on the equivalent linearization method requires the repetition of application of the linearized equations, the method by Kojima and Takewaki does not need any repetition. The double impulse, triple impulse and multiple impulses enable us to describe directly the critical timing of impulses (resonant frequency) which is not easy for the sinusoidal and other inputs without a repetitive procedure. It is important to note that, while most of the previous methods employ the equivalent linearization of the structural model with the input unchanged, the method treated in this eBook transforms the input into a series of impulses with the structural model unchanged. This characteristic guarantees high accuracy and reliability even in the large plastic deformation range. The approach presented in this eBook is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability of built environments in the elastic-plastic range
Book Synopsis Building Control with Passive Dampers by : Izuru Takewaki
Download or read book Building Control with Passive Dampers written by Izuru Takewaki and published by John Wiley & Sons. This book was released on 2011-09-23 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent introduction of active and passive structural control methods has given structural designers powerful tools for performance-based design. However, structural engineers often lack the tools for the optimal selection and placement of such systems. In Building Control with Passive Dampers , Takewaki brings together most the reliable, state-of-the-art methods in practice around the world, arming readers with a real sense of how to address optimal selection and placement of passive control systems. The first book on optimal design, sizing, and location selection of passive dampers Combines theory and practical applications Describes step-by-step how to obtain optimal damper size and placement Covers the state-of-the-art in optimal design of passive control Integrates the most reliable techniques in the top literature and used in practice worldwide Written by a recognized expert in the area MATLAB code examples available from the book’s Companion Website This book is essential for post-graduate students, researchers, and design consultants involved in building control. Professional engineers and advanced undergraduates interested in seismic design, as well as mechanical engineers looking for vibration damping techniques, will also find this book a helpful reference. Code examples available at www.wiley.com/go/takewaki
Book Synopsis Structural Design Optimization Considering Uncertainties by : Yannis Tsompanakis
Download or read book Structural Design Optimization Considering Uncertainties written by Yannis Tsompanakis and published by Taylor & Francis. This book was released on 2008-02-07 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainties play a dominant role in the design and optimization of structures and infrastructures. In optimum design of structural systems due to variations of the material, manufacturing variations, variations of the external loads and modelling uncertainty, the parameters of a structure, a structural system and its environment are not given, fixed coefficients, but random variables with a certain probability distribution. The increasing necessity to solve complex problems in Structural Optimization, Structural Reliability and Probabilistic Mechanics, requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest findings on structural optimization considering uncertainties. It contains selected contributions dealing with the use of probabilistic methods for the optimal design of different types of structures and various considerations of uncertainties. The first part is focused on reliability-based design optimization and the second part on robust design optimization. Comprising twenty-one, self-contained chapters by prominent authors in the field, it forms a complete collection of state-of-the-art theoretical advances and applications in the fields of structural optimization, structural reliability, and probabilistic computational mechanics. It is recommended to researchers, engineers, and students in civil, mechanical, naval and aerospace engineering and to professionals working on complicated costs-effective design problems.
Book Synopsis Improving the Earthquake Resilience of Buildings by : Izuru Takewaki
Download or read book Improving the Earthquake Resilience of Buildings written by Izuru Takewaki and published by Springer Science & Business Media. This book was released on 2012-07-26 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers are always interested in the worst-case scenario. One of the most important and challenging missions of structural engineers may be to narrow the range of unexpected incidents in building structural design. Redundancy, robustness and resilience play an important role in such circumstances. Improving the Earthquake Resilience of Buildings: The worst case approach discusses the importance of worst-scenario approach for improved earthquake resilience of buildings and nuclear reactor facilities. Improving the Earthquake Resilience of Buildings: The worst case approach consists of two parts. The first part deals with the characterization and modeling of worst or critical ground motions on inelastic structures and the related worst-case scenario in the structural design of ordinary simple building structures. The second part of the book focuses on investigating the worst-case scenario for passively controlled and base-isolated buildings. This allows for detailed consideration of a range of topics including: A consideration of damage of building structures in the critical excitation method for improved building-earthquake resilience, A consideration of uncertainties of structural parameters in structural control and base-isolation for improved building-earthquake resilience, and New insights in structural design of super high-rise buildings under long-period ground motions. Improving the Earthquake Resilience of Buildings: The worst case approach is a valuable resource for researchers and engineers interested in learning and applying the worst-case scenario approach in the seismic-resistant design for more resilient structures.
Book Synopsis An Impulse and Earthquake Energy Balance Approach in Nonlinear Structural Dynamics by : Izuru Takewaki
Download or read book An Impulse and Earthquake Energy Balance Approach in Nonlinear Structural Dynamics written by Izuru Takewaki and published by CRC Press. This book was released on 2021-03-16 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems in nonlinear structural dynamics and critical excitation with elastic-plastic structures are typically addressed using time-history response analysis, which requires multiple repetitions and advanced computing. This alternative approach transforms ground motion into impulses and takes an energy balance approach. This book is accessible to undergraduates, being based on the energy balance law and the concepts of kinetic and strain energies, and it can be used by practitioners for building and structural design. This presentation starts with simple models that explain the essential features and extends in a step-by-step manner to more complicated models and phenomena.
Book Synopsis Earthquake Engineering for Concrete Dams by : National Research Council
Download or read book Earthquake Engineering for Concrete Dams written by National Research Council and published by National Academies Press. This book was released on 1991-02-01 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The hazard posed by large dams has long been known. Although no concrete dam has failed as a result of earthquake activity, there have been instances of significant damage. Concerns about the seismic safety of concrete dams have been growing recently because the population at risk in locations downstream of major dams continues to expand and because the seismic design concepts in use at the time most existing dams were built were inadequate. In this book, the committee evaluates current knowledge about the earthquake performance of concrete dams, including procedures for investigating the seismic safety of such structures. Earthquake Engineering for Concrete Dams specifically informs researchers about state-of-the-art earthquake analysis of concrete dams and identifies subject areas where additional knowledge is needed.
Book Synopsis Basic Earthquake Engineering by : Halûk Sucuoğlu
Download or read book Basic Earthquake Engineering written by Halûk Sucuoğlu and published by Springer. This book was released on 2014-05-09 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.
Book Synopsis Resilient Structures and Infrastructure by : Ehsan Noroozinejad Farsangi
Download or read book Resilient Structures and Infrastructure written by Ehsan Noroozinejad Farsangi and published by Springer. This book was released on 2019-05-03 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses resilience in terms of structures’ and infrastructures’ responses to extreme loading conditions. These include static and dynamic loads such as those generated by blasts, terrorist attacks, seismic events, impact loadings, progressive collapse, floods and wind. In the last decade, the concept of resilience and resilient-based structures has increasingly gained in interest among engineers and scientists. Resilience describes a given structure’s ability to withstand sudden shocks. In other words, it can be measured by the magnitude of shock that a system can tolerate. This book offers a valuable resource for the development of new engineering practices, codes and regulations, public policy, and investigation reports on resilience, and provides broad and integrated coverage of the effects of dynamic loadings, and of the modeling techniques used to compute the structural response to these loadings.
Book Synopsis Seismic Performance of Soil-Foundation-Structure Systems by : Nawawi Chouw
Download or read book Seismic Performance of Soil-Foundation-Structure Systems written by Nawawi Chouw and published by CRC Press. This book was released on 2017-08-25 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seismic Performance of Soil-Foundation-Structure Systems presents invited papers presented at the international workshop (University of Auckland, New Zealand, 21-22 November 2016). This international workshop brought together outstanding work in earthquake engineering that embraces a holistic consideration of soilfoundation-structure systems. For example, the diversity of papers in this volume is represented by contributions from the fields of shallow foundation in liquefiable soil, spatially distributed lifelines, bridges, clustered structures (see photo on front cover), sea floor seismic motion, multi-axial ground excitation, deep foundations, soil-foundation-structurefluid interaction, liquefaction-induced settlement and uplift with SFSI. A fundamental knowledge gap is manifested by the isolated manner geotechnical and structural engineers work. A holistic consideration of soil-foundation-structures systems is only possible if civil engineers work collaboratively to the mutual benefit of all disciplines. Another gap occurs by the retarded application of up-to-date research findings in engineering design practices. Seismic Performance of Soil-Foundation-Structure Systems is the outcome from the recognized need to close this gap, since it has been observed that a considerable delay exists between published research findings and application of the principles revealed by the research. Seismic Performance of Soil-Foundation-Structure Systems will be helpful in developing more understanding of the complex nature of responses these systems present under strong earthquakes, and will assist engineers in closing the gaps identified above.
Book Synopsis Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbjörnsson by : Rajesh Rupakhety
Download or read book Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbjörnsson written by Rajesh Rupakhety and published by Springer. This book was released on 2017-12-07 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents methods and results that cover and extend beyond the state-of-the-art in structural dynamics and earthquake engineering. Most of the chapters are based on the keynote lectures at the International Conference in Earthquake Engineering and Structural Dynamics (ICESD), held in Reykjavik, Iceland, on June 12-14, 2017. The conference is being organised in memory of late Professor Ragnar Sigbjörnsson, who was an influential teacher and one of the leading researchers in the fields of structural mechanics, random fields, engineering seismology and earthquake engineering. Professor Sigbjörnsson had a close research collaboration with the Norwegian Institute of Science and Technology (NTNU), where his research was mainly focused in dynamics of marine and offshore structures. His research in Iceland was mainly focused on engineering seismology and earthquake engineering. The keynote-lecture based chapters are contributed by leading experts in these fields of research and showcase not only the historical perspective but also the most recent developments as well as a glimpse into the future. These chapters showcase a synergy of the fields of structural dynamics, engineering seismology, and earthquake engineering. In addition, some chapters in the book are based on works carried out under the leadership and initiative of Professor Sigbjörnsson and showcase his contribution to the understanding of seismic hazard and risk in Iceland. As such, the book is useful for both researchers and practicing engineers who are interested in recent research advances in structural dynamics and earthquake engineering, and in particular to those interested in seismic hazard and risk in Iceland.
Book Synopsis Earthquake Ground Motion by : Walter Salazar
Download or read book Earthquake Ground Motion written by Walter Salazar and published by BoD – Books on Demand. This book was released on 2024-03-06 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquake Ground Motion is a compilation of ten chapters covering tectonics, seismicity, site effects, tsunamis, infrastructure, and instrumentation. It presents state-of-the-art techniques for retrieving rupture models, seismogenic structures, and validation of focal mechanisms. It also presents macroseismic archiving tools for historical and instrumental earthquakes and the fundamentals of seismic tomography. The book describes the site response analysis in 2D and 3D, considering topographic and soil structure interactions, its incorporation in a seismic hazard analysis, and the impact of earthquakes on the cost of reconstruction. The final sections are devoted to the genesis of earthquakes tsunamis, non-seismic tsunamis, and the new role of gyroscopes in rotational seismology.
Book Synopsis Optimization and Anti-optimization of Structures Under Uncertainty by : Isaac Elishakoff
Download or read book Optimization and Anti-optimization of Structures Under Uncertainty written by Isaac Elishakoff and published by World Scientific. This book was released on 2010 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years. The book vividly demonstrates how the concept of uncertainty should be incorporated in a rigorous manner during the process of designing real-world structures. The necessity of anti-optimization approach is first demonstrated, then the anti-optimization techniques are applied to static, dynamic and buckling problems, thus covering the broadest possible set of applications. Finally, anti-optimization is fully utilized by a combination of structural optimization to produce the optimal design considering the worst-case scenario. This is currently the only book that covers the combination of optimization and anti-optimization. It shows how various optimization techniques are used in the novel anti-optimization technique, and how the structural optimization can be exponentially enhanced by incorporating the concept of worst-case scenario, thereby increasing the safety of the structures designed in various fields of engineering.