Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault or Long-Duration Ground Motions: Closed-Form Approach via Impulse Input

Download Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault or Long-Duration Ground Motions: Closed-Form Approach via Impulse Input PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889197425
Total Pages : 57 pages
Book Rating : 4.8/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault or Long-Duration Ground Motions: Closed-Form Approach via Impulse Input by : Izuru Takewaki

Download or read book Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault or Long-Duration Ground Motions: Closed-Form Approach via Impulse Input written by Izuru Takewaki and published by Frontiers Media SA. This book was released on 2015-12-22 with total page 57 pages. Available in PDF, EPUB and Kindle. Book excerpt: The specialty section Earthquake Engineering is one branch of Frontiers in Built Environment and welcomes critical and in-depth submissions on earthquake ground motions and their effects on buildings and infrastructures. Manuscripts should yield new insights and ultimately contribute to a safer and more reliable design of building structures and infrastructures. The scope includes the characterization of earthquake ground motions (e.g. near-fault, far-fault, short-period, long-period), their underlying properties, their intrinsic relationship with structural responses, and the true behaviors of building structures and infrastructures under risky and uncertain ground motions. More specific topics include recorded ground motions, generated ground motions, response spectra, stochastic modeling of ground motion, critical excitation, geotechnical aspects, soil mechanics, soil liquefaction, soil-structure interactions, pile foundations, earthquake input energy, structural control, passive control, active control, base-isolation, steel structures, reinforced concrete structures, wood structures, building retrofit, structural optimization, uncertainty analysis, robustness analysis, and redundancy analysis. This eBook includes four original research papers, in addition to the Specialty Grand Challenge article, on the critical earthquake response of elastic-plastic structures under near-fault or long-duration ground motions which were published in the specialty section Earthquake Engineering. In the early stage of dynamic nonlinear response analysis of structures around 1960s, a simple hysteretic structural model and a simple sinusoidal earthquake ground motion input were dealt with together with random inputs. The steady-state response was tackled by an equivalent linearization method developed by Caughey, Iwan and others. In fact, the resonance plays a key role in the earthquake-resistant design and it has a strong effect even in case of near-fault ground motions. In order to draw the steady-state response curve and investigate the resonant property, two kinds of repetition have to be introduced. One is a cycle, for one forced input frequency, of the initial guess of the steady-state response amplitude, the construction of the equivalent linear model, the analysis of the steady-state response amplitude using the equivalent linear model and the update of the equivalent linear model based on the computed steady-state response amplitude. The other is the sweeping over a range of forced input frequencies. This process is quite tedious. Four original research papers included in this eBook propose a new approach to overcome this difficulty. Kojima and Takewaki demonstrated that the elastic-plastic response as continuation of free-vibrations under impulse input can be derived in a closed form by a sophisticated energy approach without solving directly the equations of motion as differential equations. While, as pointed out above, the approach based on the equivalent linearization method requires the repetition of application of the linearized equations, the method by Kojima and Takewaki does not need any repetition. The double impulse, triple impulse and multiple impulses enable us to describe directly the critical timing of impulses (resonant frequency) which is not easy for the sinusoidal and other inputs without a repetitive procedure. It is important to note that, while most of the previous methods employ the equivalent linearization of the structural model with the input unchanged, the method treated in this eBook transforms the input into a series of impulses with the structural model unchanged. This characteristic guarantees high accuracy and reliability even in the large plastic deformation range. The approach presented in this eBook is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability of built environments in the elastic-plastic range

Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault Ground Motions: Closed-Form Approach Via Impulse Input

Download Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault Ground Motions: Closed-Form Approach Via Impulse Input PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 55 pages
Book Rating : 4.:/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault Ground Motions: Closed-Form Approach Via Impulse Input by : Izuru Takewaki

Download or read book Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault Ground Motions: Closed-Form Approach Via Impulse Input written by Izuru Takewaki and published by . This book was released on 2016 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt: The specialty section Earthquake Engineering is one branch of Frontiers in Built Environment and welcomes critical and in-depth submissions on earthquake ground motions and their effects on buildings and infrastructures. Manuscripts should yield new insights and ultimately contribute to a safer and more reliable design of building structures and infrastructures. The scope includes the characterization of earthquake ground motions (e.g. near-fault, far-fault, short-period, long-period), their underlying properties, their intrinsic relationship with structural responses, and the true behaviors of building structures and infrastructures under risky and uncertain ground motions. More specific topics include recorded ground motions, generated ground motions, response spectra, stochastic modeling of ground motion, critical excitation, geotechnical aspects, soil mechanics, soil liquefaction, soil-structure interactions, pile foundations, earthquake input energy, structural control, passive control, active control, base-isolation, steel structures, reinforced concrete structures, wood structures, building retrofit, structural optimization, uncertainty analysis, robustness analysis, and redundancy analysis. This eBook includes four original research papers, in addition to the Specialty Grand Challenge article, on the critical earthquake response of elastic-plastic structures under near-fault or long-duration ground motions which were published in the specialty section Earthquake Engineering. In the early stage of dynamic nonlinear response analysis of structures around 1960s, a simple hysteretic structural model and a simple sinusoidal earthquake ground motion input were dealt with together with random inputs. The steady-state response was tackled by an equivalent linearization method developed by Caughey, Iwan and others. In fact, the resonance plays a key role in the earthquake-resistant design and it has a strong effect even in case of near-fault ground motions. In order to draw the steady-state response curve and investigate the resonant property, two kinds of repetition have to be introduced. One is a cycle, for one forced input frequency, of the initial guess of the steady-state response amplitude, the construction of the equivalent linear model, the analysis of the steady-state response amplitude using the equivalent linear model and the update of the equivalent linear model based on the computed steady-state response amplitude. The other is the sweeping ove ...

Critical Earthquake Response of Elastic-Plastic Structures and Rigid Blocks under Near-Fault Ground Motions: Closed-Form Approach via Double Impulse

Download Critical Earthquake Response of Elastic-Plastic Structures and Rigid Blocks under Near-Fault Ground Motions: Closed-Form Approach via Double Impulse PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889198707
Total Pages : 64 pages
Book Rating : 4.8/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Critical Earthquake Response of Elastic-Plastic Structures and Rigid Blocks under Near-Fault Ground Motions: Closed-Form Approach via Double Impulse by : Izuru Takewaki

Download or read book Critical Earthquake Response of Elastic-Plastic Structures and Rigid Blocks under Near-Fault Ground Motions: Closed-Form Approach via Double Impulse written by Izuru Takewaki and published by Frontiers Media SA. This book was released on 2016-05-26 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: This eBook is the second in a series of books on the critical earthquake response of elastic-plastic structures or rigid blocks under near-fault ground motions, and includes four original research papers which were published in the specialty section Earthquake Engineering in ‘Frontiers in Built Environment’. Several extensions of the first book1 are included here. The first article is on the soil-structure interaction problem. The reduction of an original soil-structure interaction model into a single-degree-of-freedom (SDOF) model enables the application of the original theory for an SDOF model to such complicated soil-structure interaction model. The second article is concerned with the extension of the original theory for an SDOF model to a 2DOF model. Since the simple application of the original theory for an SDOF model to a multi-degree-of-freedom model is difficult due to out-of-phase phenomenon of multiple masses, a convex model theory is introduced and an upper bound of elastic-plastic response is derived. The third article is related to the stability problem of structures (collapse problems of structures) in which the P-delta effect is included. It is shown that the original theory for an SDOF model with elastic-perfectly plastic restoring-force characteristic can be applied to a model with negative second slope. The fourth article is an application of the energy balance approach to an overturning limit problem of rigid blocks. A closed-form expression of the overturning limit of rigid blocks is derived for the first time after the Housner’s pioneering work in 1963. The approach presented in this book, together with the first book, is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability of built environments in the elastic-plastic and nonlinear range.

Performance of Innovative Controlled Buildings Under Resonant and Critical Earthquake Ground Motions

Download Performance of Innovative Controlled Buildings Under Resonant and Critical Earthquake Ground Motions PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889456366
Total Pages : 87 pages
Book Rating : 4.8/5 (894 download)

DOWNLOAD NOW!


Book Synopsis Performance of Innovative Controlled Buildings Under Resonant and Critical Earthquake Ground Motions by : Izuru Takewaki

Download or read book Performance of Innovative Controlled Buildings Under Resonant and Critical Earthquake Ground Motions written by Izuru Takewaki and published by Frontiers Media SA. This book was released on 2018-11-23 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: This eBook is the fourth in a series of books on the critical earthquake response of elastic or elastic-plastic structures under near-fault or long-duration ground motions, and includes six original research papers which were published in the specialty section Earthquake Engineering in ‘Frontiers in Built Environment’. Several extensions of the first eBook, the second eBook and the third eBook are included here. The first article is on the comparison of earthquake resilience of various building structures including innovative base-isolation systems and control systems. Pulse-type ground motions and resonant harmonic ground motions are used for investigating the earthquake resilience of those innovative building structures. The second article is concerned with the performance of an innovative seismic response controlled system with shear walls and concentrated dampers in lower stories. The resonant one-cycle sine waves and resonant harmonic waves are used as the input ground motions. The third article is related to the robustness evaluation of a base-isolation building-connection hybrid controlled building structure under the critical long-period and long-duration ground motion. The multi impulse is used as a substitute for a long-period and long-duration ground motion and the model reduction to a single-degree-of-freedom (SDOF) system is conducted to propose a simple response evaluation method. The fourth article is an extension of the previously proposed energy balance approach to a damped bilinear hysteretic SDOF system under a double impulse as a substitute for a near-fault ground motion. The energy absorption through viscous damping is incorporated appropriately in the energy balance and the application of the proposed method to actual recorded ground motions is presented. The fifth article is on the robustness evaluation of base-isolation building-connection hybrid controlled building structures considering uncertainties in deep ground. The earthquake ground motion amplitude at the earthquake bedrock is evaluated by the Boore’s stochastic method in 1983 including the fault rupture and the wave propagation into the earthquake bedrock. Then the phase angle property at the earthquake bedrock is investigated by introducing the concept of phase difference which is defined for each earthquake type. A wave at the ground surface nearly resonant to the base-isolation building-connection hybrid controlled building structure is produced by considering uncertainties in deep ground. The sixth article is concerned with the critical response of nonlinear base-isolated buildings considering soil-structure interaction under a double impulse as a substitute for a near-fault ground motion. The complicated model of a nonlinear base-isolated building on ground is modeled into an SDOF system after a few model reduction processes. The approach presented in this eBook, together with the previous eBooks, is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability and resilience of built environments in the elastic-plastic and nonlinear range.

Evaluation of Building Resilience under Earthquake Input Using Single, Double and Multiple Impulses

Download Evaluation of Building Resilience under Earthquake Input Using Single, Double and Multiple Impulses PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889452700
Total Pages : 63 pages
Book Rating : 4.8/5 (894 download)

DOWNLOAD NOW!


Book Synopsis Evaluation of Building Resilience under Earthquake Input Using Single, Double and Multiple Impulses by : Izuru Takewaki

Download or read book Evaluation of Building Resilience under Earthquake Input Using Single, Double and Multiple Impulses written by Izuru Takewaki and published by Frontiers Media SA. This book was released on 2017-09-07 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: This eBook is the third in a series of books on the critical earthquake response of elastic or elastic-plastic structures under near-fault or long-duration ground motions, and includes four original research papers which were published in the specialty section Earthquake Engineering in ‘Frontiers in Built Environment’. Several extensions of the first eBook and the second eBook are included here. The first article is on the earthquake resilience of residential houses after repeated ground motions with high intensity. The 2016 Kumamoto earthquake brought a significant impact on the earthquake resilience of residential houses under repeated ground motions with high intensity in a few days. The necessary strength upgrade withstanding two repeated high-intensity ground motions was found to be 1.5. The second article is concerned with the smart enhancement of earthquake resilience of building structures under both near-fault and long-duration ground motions. A hybrid system of base-isolation and building connection control was proposed and its earthquake resilience to near-fault and long-duration ground motions was evaluated by a double impulse and a multiple impulse. It was demonstrated that the base-isolation is effective for near-fault ground motions and the building connection system using passive dampers is effective for long-duration ground motions. The third article is related to the robustness evaluation of elastic-plastic base-isolated high-rise buildings under resonant near-fault ground motions. The robustness function was introduced to evaluate quantitatively the robustness of elastic-plastic base-isolated high-rise buildings. The fourth article is an extension of the previously proposed energy balance approach to a bilinear elastic-plastic single-degree-of-freedom system under a long-duration sinusoidal ground motion. A historical difficulty in nonlinear vibration posed by Caughey (1960) and Iwan (1961) has been overcome in a smart manner after half a century. The approach presented in this eBook, together with the previous eBooks, is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability and resilience of built environments in the elastic-plastic and nonlinear range.

An Impulse and Earthquake Energy Balance Approach in Nonlinear Structural Dynamics

Download An Impulse and Earthquake Energy Balance Approach in Nonlinear Structural Dynamics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000365468
Total Pages : 314 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis An Impulse and Earthquake Energy Balance Approach in Nonlinear Structural Dynamics by : Izuru Takewaki

Download or read book An Impulse and Earthquake Energy Balance Approach in Nonlinear Structural Dynamics written by Izuru Takewaki and published by CRC Press. This book was released on 2021-03-16 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems in nonlinear structural dynamics and critical excitation with elastic-plastic structures are typically addressed using time-history response analysis, which requires multiple repetitions and advanced computing. This alternative approach transforms ground motion into impulses and takes an energy balance approach. This book is accessible to undergraduates, being based on the energy balance law and the concepts of kinetic and strain energies, and it can be used by practitioners for building and structural design. This presentation starts with simple models that explain the essential features and extends in a step-by-step manner to more complicated models and phenomena.

Improving the Earthquake Resilience of Buildings

Download Improving the Earthquake Resilience of Buildings PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 144714144X
Total Pages : 332 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Improving the Earthquake Resilience of Buildings by : Izuru Takewaki

Download or read book Improving the Earthquake Resilience of Buildings written by Izuru Takewaki and published by Springer Science & Business Media. This book was released on 2012-07-26 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers are always interested in the worst-case scenario. One of the most important and challenging missions of structural engineers may be to narrow the range of unexpected incidents in building structural design. Redundancy, robustness and resilience play an important role in such circumstances. Improving the Earthquake Resilience of Buildings: The worst case approach discusses the importance of worst-scenario approach for improved earthquake resilience of buildings and nuclear reactor facilities. Improving the Earthquake Resilience of Buildings: The worst case approach consists of two parts. The first part deals with the characterization and modeling of worst or critical ground motions on inelastic structures and the related worst-case scenario in the structural design of ordinary simple building structures. The second part of the book focuses on investigating the worst-case scenario for passively controlled and base-isolated buildings. This allows for detailed consideration of a range of topics including: A consideration of damage of building structures in the critical excitation method for improved building-earthquake resilience, A consideration of uncertainties of structural parameters in structural control and base-isolation for improved building-earthquake resilience, and New insights in structural design of super high-rise buildings under long-period ground motions. Improving the Earthquake Resilience of Buildings: The worst case approach is a valuable resource for researchers and engineers interested in learning and applying the worst-case scenario approach in the seismic-resistant design for more resilient structures.

Stochastic Model for Earthquake Ground Motion Using Wavelet Packets

Download Stochastic Model for Earthquake Ground Motion Using Wavelet Packets PDF Online Free

Author :
Publisher : Stanford University
ISBN 13 :
Total Pages : 329 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Stochastic Model for Earthquake Ground Motion Using Wavelet Packets by : Yoshifumi Yamamoto

Download or read book Stochastic Model for Earthquake Ground Motion Using Wavelet Packets written by Yoshifumi Yamamoto and published by Stanford University. This book was released on 2011 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: For performance-based design, nonlinear dynamic structural analysis for various types of input ground motions is required. Stochastic (simulated) ground motions are sometimes useful as input motions, because unlike recorded motions they are not limited in number and because their properties can be varied systematically to study the impact of ground motion properties on structural response. This dissertation describes an approach by which the wavelet packet transform can be used to characterize complex time-varying earthquake ground motions, and it illustrates the potential benefits of such an approach in a variety of earthquake engineering applications. The proposed model is based on Thr´ainsson and Kiremidjian (2002), which use Fourier amplitudes and phase differences to simulate ground motions and attenuation models to their model parameters. We extend their model using wavelet packet transform since it can control the time and frequency characteristic of time series. The time- and frequency-varying properties of real ground motions can be captured using wavelet packets, so a model is developed that requires only 13 parameters to describe a given ground motion. These 13 parameters are then related to seismological variables such as earthquake magnitude, distance, and site condition, through regression analysis that captures trends in mean values, standard deviations and correlations of these parameters observed in a large database of recorded strong ground motions. The resulting regression equations then form a model that can be used to predict ground motions for a future earthquake scenario; this model is analogous to widely used empirical ground motion prediction models (formerly called "attenuation models") except that this model predicts entire time series rather than only response spectra. The ground motions produced using this predictive model are explored in detail, and are shown to have elastic response spectra, inelastic response spectra, durations, mean periods, etc., that are consistent in both mean and variability to existing published predictive models for those properties. That consistency allows the proposed model to be used in place of existing models for probabilistic seismic hazard analysis (PSHA) calculations. This new way to calculate PSHA is termed "simulation-based probabilistic seismic hazard analysis" and it allows a deeper understanding of ground motion hazard and hazard deaggregation than is possible with traditional PSHA because it produces a suite of potential ground motion time histories rather than simply a distribution of response spectra. The potential benefits of this approach are demonstrated and explored in detail. Taking this analysis even further, this suite of time histories can be used as input for nonlinear dynamic analysis of structures, to perform a risk analysis (i.e., "probabilistic seismic demand analysis") that allows computation of the probability of the structure exceeding some level of response in a future earthquake. These risk calculations are often performed today using small sets of scaled recorded ground motions, but that approach requires a variety of assumptions regarding important properties of ground motions, the impacts of ground motion scaling, etc. The approach proposed here facilitates examination of those assumptions, and provides a variety of other relevant information not obtainable by that traditional approach.

Stochastic Model for Earthquake Ground Motion Using Wavelet Packets

Download Stochastic Model for Earthquake Ground Motion Using Wavelet Packets PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (755 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Model for Earthquake Ground Motion Using Wavelet Packets by : Yoshifumi Yamamoto

Download or read book Stochastic Model for Earthquake Ground Motion Using Wavelet Packets written by Yoshifumi Yamamoto and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: For performance-based design, nonlinear dynamic structural analysis for various types of input ground motions is required. Stochastic (simulated) ground motions are sometimes useful as input motions, because unlike recorded motions they are not limited in number and because their properties can be varied systematically to study the impact of ground motion properties on structural response. This dissertation describes an approach by which the wavelet packet transform can be used to characterize complex time-varying earthquake ground motions, and it illustrates the potential benefits of such an approach in a variety of earthquake engineering applications. The proposed model is based on Thráinsson and Kiremidjian (2002), which use Fourier amplitudes and phase differences to simulate ground motions and attenuation models to their model parameters. We extend their model using wavelet packet transform since it can control the time and frequency characteristic of time series. The time- and frequency-varying properties of real ground motions can be captured using wavelet packets, so a model is developed that requires only 13 parameters to describe a given ground motion. These 13 parameters are then related to seismological variables such as earthquake magnitude, distance, and site condition, through regression analysis that captures trends in mean values, standard deviations and correlations of these parameters observed in a large database of recorded strong ground motions. The resulting regression equations then form a model that can be used to predict ground motions for a future earthquake scenario; this model is analogous to widely used empirical ground motion prediction models (formerly called "attenuation models") except that this model predicts entire time series rather than only response spectra. The ground motions produced using this predictive model are explored in detail, and are shown to have elastic response spectra, inelastic response spectra, durations, mean periods, etc., that are consistent in both mean and variability to existing published predictive models for those properties. That consistency allows the proposed model to be used in place of existing models for probabilistic seismic hazard analysis (PSHA) calculations. This new way to calculate PSHA is termed "simulation-based probabilistic seismic hazard analysis" and it allows a deeper understanding of ground motion hazard and hazard deaggregation than is possible with traditional PSHA because it produces a suite of potential ground motion time histories rather than simply a distribution of response spectra. The potential benefits of this approach are demonstrated and explored in detail. Taking this analysis even further, this suite of time histories can be used as input for nonlinear dynamic analysis of structures, to perform a risk analysis (i.e., "probabilistic seismic demand analysis") that allows computation of the probability of the structure exceeding some level of response in a future earthquake. These risk calculations are often performed today using small sets of scaled recorded ground motions, but that approach requires a variety of assumptions regarding important properties of ground motions, the impacts of ground motion scaling, etc. The approach proposed here facilitates examination of those assumptions, and provides a variety of other relevant information not obtainable by that traditional approach.

Critical Aspects of Earthquake Ground Motion and Building Damage Potential

Download Critical Aspects of Earthquake Ground Motion and Building Damage Potential PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 272 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Critical Aspects of Earthquake Ground Motion and Building Damage Potential by : Applied Technology Council

Download or read book Critical Aspects of Earthquake Ground Motion and Building Damage Potential written by Applied Technology Council and published by . This book was released on 1984 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Effectiveness of Dampers in Response of Structures to Near-fault Earthquakes

Download Effectiveness of Dampers in Response of Structures to Near-fault Earthquakes PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Effectiveness of Dampers in Response of Structures to Near-fault Earthquakes by : Xiaoqing Xu

Download or read book Effectiveness of Dampers in Response of Structures to Near-fault Earthquakes written by Xiaoqing Xu and published by . This book was released on 2006 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using the nonlinear dynamic analysis program DRAIN-2DX, a detailed investigation for a one-story single-degree-of-freedom steel moment-resistant frame and a ten-story multi-degree-of-freedom steel moment-resistant frame with and without added dampers is performed. Three types of dampers - friction damper, viscoelastic damper and fluid viscous damper - are investigated. Comparisons of each damper under far-fault and near-fault ground motions are carried out. It is found that, when subjected to the same peak acceleration of ground motion, the dynamic responses of all damped structures under near-fault earthquakes with high pulse-type velocity are generally stronger than those under far-fault earthquakes. Moreover, from the energy point of view, comparison of effectiveness of different dampers subjected to earthquakes is performed. It is found that the friction-damped structure is relatively more effective than the other two dampers when subjected to selected earthquake records. However, the difference in the effectiveness among the three dampers is not large, which shows that all three types of dampers can be used to mitigate structural dynamic response effectively.