Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Counting With Symmetric Functions
Download Counting With Symmetric Functions full books in PDF, epub, and Kindle. Read online Counting With Symmetric Functions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Counting with Symmetric Functions by : Jeffrey Remmel
Download or read book Counting with Symmetric Functions written by Jeffrey Remmel and published by Birkhäuser. This book was released on 2015-11-28 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enumeration theorem using symmetric functions. Chapters 7 and 8 are more specialized than the preceding ones, covering consecutive pattern matches in permutations, words, cycles, and alternating permutations and introducing the reciprocity method as a way to define ring homomorphisms with desirable properties. Counting with Symmetric Functions will appeal to graduate students and researchers in mathematics or related subjects who are interested in counting methods, generating functions, or symmetric functions. The unique approach taken and results and exercises explored by the authors make it an important contribution to the mathematical literature.
Book Synopsis Combinatorics: The Art of Counting by : Bruce E. Sagan
Download or read book Combinatorics: The Art of Counting written by Bruce E. Sagan and published by American Mathematical Soc.. This book was released on 2020-10-16 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Book Synopsis The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics by : James Haglund
Download or read book The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics written by James Haglund and published by American Mathematical Soc.. This book was released on 2008 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work contains detailed descriptions of developments in the combinatorics of the space of diagonal harmonics, a topic at the forefront of current research in algebraic combinatorics. These developments have led in turn to some surprising discoveries in the combinatorics of Macdonald polynomials.
Book Synopsis Symmetric Functions and Combinatorial Operators on Polynomials by : Alain Lascoux
Download or read book Symmetric Functions and Combinatorial Operators on Polynomials written by Alain Lascoux and published by American Mathematical Soc.. This book was released on 2003 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of symmetric functions is an old topic in mathematics, which is used as an algebraic tool in many classical fields. With $\lambda$-rings, one can regard symmetric functions as operators on polynomials and reduce the theory to just a handful of fundamental formulas. One of the main goals of the book is to describe the technique of $\lambda$-rings. The main applications of this technique to the theory of symmetric functions are related to the Euclid algorithm and its occurrence in division, continued fractions, Pade approximants, and orthogonal polynomials. Putting the emphasis on the symmetric group instead of symmetric functions, one can extend the theory to non-symmetric polynomials, with Schur functions being replaced by Schubert polynomials. In two independent chapters, the author describes the main properties of these polynomials, following either the approach of Newton and interpolation methods, or the method of Cauchy and the diagonalization of a kernel generalizing the resultant. The last chapter sketches a non-commutative version of symmetric functions, with the help of Young tableaux and the plactic monoid. The book also contains numerous exercises clarifying and extending many points of the main text.
Book Synopsis An Introduction to Symmetric Functions and Their Combinatorics by : Eric S. Egge
Download or read book An Introduction to Symmetric Functions and Their Combinatorics written by Eric S. Egge and published by American Mathematical Soc.. This book was released on 2019-11-18 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a reader-friendly introduction to the theory of symmetric functions, and it includes fundamental topics such as the monomial, elementary, homogeneous, and Schur function bases; the skew Schur functions; the Jacobi–Trudi identities; the involution ω ω; the Hall inner product; Cauchy's formula; the RSK correspondence and how to implement it with both insertion and growth diagrams; the Pieri rules; the Murnaghan–Nakayama rule; Knuth equivalence; jeu de taquin; and the Littlewood–Richardson rule. The book also includes glimpses of recent developments and active areas of research, including Grothendieck polynomials, dual stable Grothendieck polynomials, Stanley's chromatic symmetric function, and Stanley's chromatic tree conjecture. Written in a conversational style, the book contains many motivating and illustrative examples. Whenever possible it takes a combinatorial approach, using bijections, involutions, and combinatorial ideas to prove algebraic results. The prerequisites for this book are minimal—familiarity with linear algebra, partitions, and generating functions is all one needs to get started. This makes the book accessible to a wide array of undergraduates interested in combinatorics.
Book Synopsis Bijective Combinatorics by : Nicholas Loehr
Download or read book Bijective Combinatorics written by Nicholas Loehr and published by CRC Press. This book was released on 2011-02-10 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bijective proofs are some of the most elegant and powerful techniques in all of mathematics. Suitable for readers without prior background in algebra or combinatorics, Bijective Combinatorics presents a general introduction to enumerative and algebraic combinatorics that emphasizes bijective methods.The text systematically develops the mathematical
Book Synopsis Number, Shape, & Symmetry by : Diane L. Herrmann
Download or read book Number, Shape, & Symmetry written by Diane L. Herrmann and published by CRC Press. This book was released on 2012-10-18 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
Book Synopsis Notes on Counting: An Introduction to Enumerative Combinatorics by : Peter J. Cameron
Download or read book Notes on Counting: An Introduction to Enumerative Combinatorics written by Peter J. Cameron and published by Cambridge University Press. This book was released on 2017-06-29 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to enumerative combinatorics, vital to many areas of mathematics. It is suitable as a class text or for individual study.
Book Synopsis Formal Power Series and Algebraic Combinatorics by : Daniel Krob
Download or read book Formal Power Series and Algebraic Combinatorics written by Daniel Krob and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 815 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the extended abstracts presented at the 12th International Conference on Power Series and Algebraic Combinatorics (FPSAC '00) that took place at Moscow State University, June 26-30, 2000. These proceedings cover the most recent trends in algebraic and bijective combinatorics, including classical combinatorics, combinatorial computer algebra, combinatorial identities, combinatorics of classical groups, Lie algebra and quantum groups, enumeration, symmetric functions, young tableaux etc...
Book Synopsis Handbook of Enumerative Combinatorics by : Miklos Bona
Download or read book Handbook of Enumerative Combinatorics written by Miklos Bona and published by CRC Press. This book was released on 2015-03-24 with total page 1073 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he
Book Synopsis Graph Theory and Computing by : Ronald C. Read
Download or read book Graph Theory and Computing written by Ronald C. Read and published by Academic Press. This book was released on 2014-05-12 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph Theory and Computing focuses on the processes, methodologies, problems, and approaches involved in graph theory and computer science. The book first elaborates on alternating chain methods, average height of planted plane trees, and numbering of a graph. Discussions focus on numbered graphs and difference sets, Euclidean models and complete graphs, classes and conditions for graceful graphs, and maximum matching problem. The manuscript then elaborates on the evolution of the path number of a graph, production of graphs by computer, and graph-theoretic programming language. Topics include FORTRAN characteristics of GTPL, design considerations, representation and identification of graphs in a computer, production of simple graphs and star topologies, and production of stars having a given topology. The manuscript examines the entropy of transformed finite-state automata and associated languages; counting hexagonal and triangular polyominoes; and symmetry of cubical and general polyominoes. Graph coloring algorithms, algebraic isomorphism invariants for graphs of automata, and coding of various kinds of unlabeled trees are also discussed. The publication is a valuable source of information for researchers interested in graph theory and computing.
Download or read book Fearless Symmetry written by Avner Ash and published by Princeton University Press. This book was released on 2008-08-24 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in a friendly style for a general mathematically literate audience, 'Fearless Symmetry', starts with the basic properties of integers and permutations and reaches current research in number theory.
Book Synopsis Principles of Combinatorics by : Berge
Download or read book Principles of Combinatorics written by Berge and published by Academic Press. This book was released on 1971-04-20 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Berge's Principles of Combinatorics is now an acknowledged classic work of the field. Complementary to his previous books, Berge's introduction deals largely with enumeration. The choice of topics is balanced, the presentation elegant, and the text can be followed by anyone with an interest in the subject with only a little algebra required as a background. Some topics were here described for the first time, including Robinston-Shensted theorum, the Eden-Schutzenberger theorum, and facts connecting Young diagrams, trees, and the symmetric group.
Book Synopsis A Course in Enumeration by : Martin Aigner
Download or read book A Course in Enumeration written by Martin Aigner and published by Springer Science & Business Media. This book was released on 2007-06-28 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial enumeration is a readily accessible subject full of easily stated, but sometimes tantalizingly difficult problems. This book leads the reader in a leisurely way from basic notions of combinatorial enumeration to a variety of topics, ranging from algebra to statistical physics. The book is organized in three parts: Basics, Methods, and Topics. The aim is to introduce readers to a fascinating field, and to offer a sophisticated source of information for professional mathematicians desiring to learn more. There are 666 exercises, and every chapter ends with a highlight section, discussing in detail a particularly beautiful or famous result.
Book Synopsis Enumerative Combinatorics: Volume 1 by : Richard P. Stanley
Download or read book Enumerative Combinatorics: Volume 1 written by Richard P. Stanley and published by Cambridge University Press. This book was released on 2012 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: Richard Stanley's two-volume basic introduction to enumerative combinatorics has become the standard guide to the topic for students and experts alike. This thoroughly revised second edition of Volume 1 includes ten new sections and more than 300 new exercises, most with solutions, reflecting numerous new developments since the publication of the first edition in 1986. The author brings the coverage up to date and includes a wide variety of additional applications and examples, as well as updated and expanded chapter bibliographies. Many of the less difficult new exercises have no solutions so that they can more easily be assigned to students. The material on P-partitions has been rearranged and generalized; the treatment of permutation statistics has been greatly enlarged; and there are also new sections on q-analogues of permutations, hyperplane arrangements, the cd-index, promotion and evacuation and differential posets.
Book Synopsis Analytic Combinatorics in Several Variables by : Robin Pemantle
Download or read book Analytic Combinatorics in Several Variables written by Robin Pemantle and published by Cambridge University Press. This book was released on 2013-05-31 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at graduate students and researchers in enumerative combinatorics, this book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective.
Book Synopsis Symmetric Functions and Hall Polynomials by : Ian Grant Macdonald
Download or read book Symmetric Functions and Hall Polynomials written by Ian Grant Macdonald and published by Oxford University Press. This book was released on 1998 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and so on. Macdonald polynomials have become a part of basic material that a researcher simply must know if (s)he wants to work in one of the above domains, ensuring this new edition will appeal to a very broad mathematical audience. Featuring a new foreword by Professor Richard Stanley of MIT.