An Introduction to Convex Polytopes

Download An Introduction to Convex Polytopes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461211484
Total Pages : 168 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Convex Polytopes by : Arne Brondsted

Download or read book An Introduction to Convex Polytopes written by Arne Brondsted and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in [R1d will suffice.

Polytopes, Rings, and K-Theory

Download Polytopes, Rings, and K-Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387763562
Total Pages : 461 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Polytopes, Rings, and K-Theory by : Winfried Bruns

Download or read book Polytopes, Rings, and K-Theory written by Winfried Bruns and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines interactions of polyhedral discrete geometry and algebra. What makes this book unique is the presentation of several central results in all three areas of the exposition - from discrete geometry, to commutative algebra, and K-theory.

Existence of Unimodular Triangulations–Positive Results

Download Existence of Unimodular Triangulations–Positive Results PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470447169
Total Pages : 83 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Existence of Unimodular Triangulations–Positive Results by : Christian Haase

Download or read book Existence of Unimodular Triangulations–Positive Results written by Christian Haase and published by American Mathematical Soc.. This book was released on 2021-07-21 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unimodular triangulations of lattice polytopes arise in algebraic geometry, commutative algebra, integer programming and, of course, combinatorics. In this article, we review several classes of polytopes that do have unimodular triangulations and constructions that preserve their existence. We include, in particular, the first effective proof of the classical result by Knudsen-Mumford-Waterman stating that every lattice polytope has a dilation that admits a unimodular triangulation. Our proof yields an explicit (although doubly exponential) bound for the dilation factor.

Convex Polytopes

Download Convex Polytopes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461300193
Total Pages : 561 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Convex Polytopes by : Branko Grünbaum

Download or read book Convex Polytopes written by Branko Grünbaum and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The original edition [...] inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." --Peter McMullen, University College London

Computing the Continuous Discretely

Download Computing the Continuous Discretely PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493929690
Total Pages : 295 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Computing the Continuous Discretely by : Matthias Beck

Download or read book Computing the Continuous Discretely written by Matthias Beck and published by Springer. This book was released on 2015-11-14 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE

Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes

Download Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811200491
Total Pages : 476 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes by : Takayuki Hibi

Download or read book Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes written by Takayuki Hibi and published by World Scientific. This book was released on 2019-05-30 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of research papers and expository survey articles presented by the invited speakers of the Summer Workshop on Lattice Polytopes. Topics include enumerative, algebraic and geometric combinatorics on lattice polytopes, topological combinatorics, commutative algebra and toric varieties.Readers will find that this volume showcases current trends on lattice polytopes and stimulates further developments of many research areas surrounding this field. With the survey articles, research papers and open problems, this volume provides its fundamental materials for graduate students to learn and researchers to find exciting activities and avenues for further exploration on lattice polytopes.

Handbook of Convex Geometry

Download Handbook of Convex Geometry PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080934404
Total Pages : 769 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Convex Geometry by : Bozzano G Luisa

Download or read book Handbook of Convex Geometry written by Bozzano G Luisa and published by Elsevier. This book was released on 2014-06-28 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.

Introduction to Toric Varieties

Download Introduction to Toric Varieties PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691000497
Total Pages : 174 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Toric Varieties by : William Fulton

Download or read book Introduction to Toric Varieties written by William Fulton and published by Princeton University Press. This book was released on 1993 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories. The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.

Interactions with Lattice Polytopes

Download Interactions with Lattice Polytopes PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030983277
Total Pages : 368 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Interactions with Lattice Polytopes by : Alexander M. Kasprzyk

Download or read book Interactions with Lattice Polytopes written by Alexander M. Kasprzyk and published by Springer Nature. This book was released on 2022-06-08 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects together original research and survey articles highlighting the fertile interdisciplinary applications of convex lattice polytopes in modern mathematics. Covering a diverse range of topics, including algebraic geometry, mirror symmetry, symplectic geometry, discrete geometry, and algebraic combinatorics, the common theme is the study of lattice polytopes. These fascinating combinatorial objects are a cornerstone of toric geometry and continue to find rich and unforeseen applications throughout mathematics. The workshop Interactions with Lattice Polytopes assembled many top researchers at the Otto-von-Guericke-Universität Magdeburg in 2017 to discuss the role of lattice polytopes in their work, and many of their presented results are collected in this book. Intended to be accessible, these articles are suitable for researchers and graduate students interested in learning about some of the wide-ranging interactions of lattice polytopes in pure mathematics.

Convex Bodies: The Brunn–Minkowski Theory

Download Convex Bodies: The Brunn–Minkowski Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107601010
Total Pages : 759 pages
Book Rating : 4.1/5 (76 download)

DOWNLOAD NOW!


Book Synopsis Convex Bodies: The Brunn–Minkowski Theory by : Rolf Schneider

Download or read book Convex Bodies: The Brunn–Minkowski Theory written by Rolf Schneider and published by Cambridge University Press. This book was released on 2014 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete presentation of a central part of convex geometry, from basics for beginners, to the exposition of current research.

Higher Dimensional Varieties and Rational Points

Download Higher Dimensional Varieties and Rational Points PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662051230
Total Pages : 307 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Higher Dimensional Varieties and Rational Points by : Károly Jr. Böröczky

Download or read book Higher Dimensional Varieties and Rational Points written by Károly Jr. Böröczky and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring the connections between arithmetic and geometric properties of algebraic varieties has been the object of much fruitful study for a long time, especially in the case of curves. The aim of the Summer School and Conference on "Higher Dimensional Varieties and Rational Points" held in Budapest, Hungary during September 2001 was to bring together students and experts from the arithmetic and geometric sides of algebraic geometry in order to get a better understanding of the current problems, interactions and advances in higher dimension. The lecture series and conference lectures assembled in this volume give a comprehensive introduction to students and researchers in algebraic geometry and in related fields to the main ideas of this rapidly developing area.

Combinatorial Convexity and Algebraic Geometry

Download Combinatorial Convexity and Algebraic Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461240441
Total Pages : 378 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Combinatorial Convexity and Algebraic Geometry by : Günter Ewald

Download or read book Combinatorial Convexity and Algebraic Geometry written by Günter Ewald and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.

A Course in Convexity

Download A Course in Convexity PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821829688
Total Pages : 378 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Course in Convexity by : Alexander Barvinok

Download or read book A Course in Convexity written by Alexander Barvinok and published by American Mathematical Soc.. This book was released on 2002-11-19 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems. The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.

Integer Points in Polyhedra

Download Integer Points in Polyhedra PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037190524
Total Pages : 204 pages
Book Rating : 4.1/5 (95 download)

DOWNLOAD NOW!


Book Synopsis Integer Points in Polyhedra by : Alexander Barvinok

Download or read book Integer Points in Polyhedra written by Alexander Barvinok and published by European Mathematical Society. This book was released on 2008 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained exposition of several core aspects of the theory of rational polyhedra with a view towards algorithmic applications to efficient counting of integer points, a problem arising in many areas of pure and applied mathematics. The approach is based on the consistent development and application of the apparatus of generating functions and the algebra of polyhedra. Topics range from classical, such as the Euler characteristic, continued fractions, Ehrhart polynomial, Minkowski Convex Body Theorem, and the Lenstra-Lenstra-Lovasz lattice reduction algorithm, to recent advances such as the Berline-Vergne local formula. The text is intended for graduate students and researchers. Prerequisites are a modest background in linear algebra and analysis as well as some general mathematical maturity. Numerous figures, exercises of varying degree of difficulty as well as references to the literature and publicly available software make the text suitable for a graduate course.

Handbook of Discrete and Computational Geometry

Download Handbook of Discrete and Computational Geometry PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351645919
Total Pages : 2354 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Discrete and Computational Geometry by : Csaba D. Toth

Download or read book Handbook of Discrete and Computational Geometry written by Csaba D. Toth and published by CRC Press. This book was released on 2017-11-22 with total page 2354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Convexity from the Geometric Point of View

Download Convexity from the Geometric Point of View PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031505077
Total Pages : 1195 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Convexity from the Geometric Point of View by : Vitor Balestro

Download or read book Convexity from the Geometric Point of View written by Vitor Balestro and published by Springer Nature. This book was released on with total page 1195 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Lattice Points

Download Lattice Points PDF Online Free

Author :
Publisher : Longman Scientific and Technical
ISBN 13 :
Total Pages : 200 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Lattice Points by : Paul Erdős

Download or read book Lattice Points written by Paul Erdős and published by Longman Scientific and Technical. This book was released on 1989 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains solved and unsolved problems concerning lattice points, especially geometric, number theoretic, combinatorial, and analytic results, theories, and problems related to lattice points. Emphasis is on the geometry of numbers. Provides extensive comments on each problem, consisting mostly of heuristic arguments and intuitive descriptions. There are only a few proofs. Annotation copyrighted by Book News, Inc., Portland, OR