Control-Oriented System Identification

Download Control-Oriented System Identification PDF Online Free

Author :
Publisher : Wiley-Interscience
ISBN 13 :
Total Pages : 458 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Control-Oriented System Identification by : Jie Chen

Download or read book Control-Oriented System Identification written by Jie Chen and published by Wiley-Interscience. This book was released on 2000-06-19 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers system identification. Identification, in the language of control theory, is the process of obtaining a model of the object or process being controlled.

Block-oriented Nonlinear System Identification

Download Block-oriented Nonlinear System Identification PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1849965129
Total Pages : 425 pages
Book Rating : 4.8/5 (499 download)

DOWNLOAD NOW!


Book Synopsis Block-oriented Nonlinear System Identification by : Fouad Giri

Download or read book Block-oriented Nonlinear System Identification written by Fouad Giri and published by Springer Science & Business Media. This book was released on 2010-08-18 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block-oriented Nonlinear System Identification deals with an area of research that has been very active since the turn of the millennium. The book makes a pedagogical and cohesive presentation of the methods developed in that time. These include: iterative and over-parameterization techniques; stochastic and frequency approaches; support-vector-machine, subspace, and separable-least-squares methods; blind identification method; bounded-error method; and decoupling inputs approach. The identification methods are presented by authors who have either invented them or contributed significantly to their development. All the important issues e.g., input design, persistent excitation, and consistency analysis, are discussed. The practical relevance of block-oriented models is illustrated through biomedical/physiological system modelling. The book will be of major interest to all those who are concerned with nonlinear system identification whatever their activity areas. This is particularly the case for educators in electrical, mechanical, chemical and biomedical engineering and for practising engineers in process, aeronautic, aerospace, robotics and vehicles control. Block-oriented Nonlinear System Identification serves as a reference for active researchers, new comers, industrial and education practitioners and graduate students alike.

Control-oriented Modelling and Identification

Download Control-oriented Modelling and Identification PDF Online Free

Author :
Publisher : IET
ISBN 13 : 1849196141
Total Pages : 409 pages
Book Rating : 4.8/5 (491 download)

DOWNLOAD NOW!


Book Synopsis Control-oriented Modelling and Identification by : Marco Lovera

Download or read book Control-oriented Modelling and Identification written by Marco Lovera and published by IET. This book was released on 2015-01-07 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book covers the state-of-the-art in control-oriented modelling and identification techniques. With contributions from leading researchers in the subject, Control-oriented Modelling and Identification: Theory and practice covers the main methods and tools available to develop advanced mathematical models suitable for control system design, including: object-oriented modelling and simulation; projection-based model reduction techniques; integrated modelling and parameter estimation; identification for robust control of complex systems; subspace-based multi-step predictors for predictive control; closed-loop subspace predictive control; structured nonlinear system identification; and linear fractional LPV model identification from local experiments using an H1-based glocal approach.

System Identification and Adaptive Control

Download System Identification and Adaptive Control PDF Online Free

Author :
Publisher : Springer Science & Business
ISBN 13 : 3319063642
Total Pages : 316 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis System Identification and Adaptive Control by : Yiannis Boutalis

Download or read book System Identification and Adaptive Control written by Yiannis Boutalis and published by Springer Science & Business. This book was released on 2014-04-23 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.

Data-Driven Science and Engineering

Download Data-Driven Science and Engineering PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009098489
Total Pages : 615 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Identification and Control

Download Identification and Control PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846288991
Total Pages : 330 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Identification and Control by : Ricardo S. Sánchez-Peña

Download or read book Identification and Control written by Ricardo S. Sánchez-Peña and published by Springer Science & Business Media. This book was released on 2007-06-28 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book meets head-on the difficulty of making practical use of new systems theory, presenting a selection of varied applications together with relevant theory. It shows how workable identification and control solutions can be derived by adapting and extrapolating from the theory. Each chapter has a common structure: a brief presentation of theory; the description of a particular application; experimental results; and a section highlighting, explaining and laying out solutions to the discrepancy between the theoretical and the practical.

Nonlinear System Identification

Download Nonlinear System Identification PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030474399
Total Pages : 1235 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear System Identification by : Oliver Nelles

Download or read book Nonlinear System Identification written by Oliver Nelles and published by Springer Nature. This book was released on 2020-09-09 with total page 1235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice. Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and statistics. Accordingly, it can also serve as an introduction to linear system identification, and provides a practical overview of the major optimization methods used in engineering. The focus is on gaining an intuitive understanding of the subject and the practical application of the techniques discussed. The book is not written in a theorem/proof style; instead, the mathematics is kept to a minimum, and the ideas covered are illustrated with numerous figures, examples, and real-world applications. In the past, nonlinear system identification was a field characterized by a variety of ad-hoc approaches, each applicable only to a very limited class of systems. With the advent of neural networks, fuzzy models, Gaussian process models, and modern structure optimization techniques, a much broader class of systems can now be handled. Although one major aspect of nonlinear systems is that virtually every one is unique, tools have since been developed that allow each approach to be applied to a wide variety of systems.

System Identification

Download System Identification PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0857295225
Total Pages : 334 pages
Book Rating : 4.8/5 (572 download)

DOWNLOAD NOW!


Book Synopsis System Identification by : Karel J. Keesman

Download or read book System Identification written by Karel J. Keesman and published by Springer Science & Business Media. This book was released on 2011-05-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

Modelling and Control of Dynamic Systems Using Gaussian Process Models

Download Modelling and Control of Dynamic Systems Using Gaussian Process Models PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319210211
Total Pages : 281 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Modelling and Control of Dynamic Systems Using Gaussian Process Models by : Juš Kocijan

Download or read book Modelling and Control of Dynamic Systems Using Gaussian Process Models written by Juš Kocijan and published by Springer. This book was released on 2015-11-21 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.

System Identification and Robust Control

Download System Identification and Robust Control PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447115139
Total Pages : 317 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis System Identification and Robust Control by : Steen Toffner-Clausen

Download or read book System Identification and Robust Control written by Steen Toffner-Clausen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies, ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The present text Steen T0ffner-Clausen deals with both system identification and robust control. It provides a very comprehensive tutorial introduction to some of the most difficult topics in robust control theory before considering applications problems. Traditional Hoo robust control design concepts for multivariable systems are first considered and the problems of robust stability and performance are discussed. The following chapter introduces the idea of the structured singular value and applies this to both analysis and synthesis problems. The author manages to provide a very straightforward introduction to this subject and also introduces some new ideas.

Nonlinear System Identification

Download Nonlinear System Identification PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118535553
Total Pages : 611 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear System Identification by : Stephen A. Billings

Download or read book Nonlinear System Identification written by Stephen A. Billings and published by John Wiley & Sons. This book was released on 2013-07-29 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.

System Identification

Download System Identification PDF Online Free

Author :
Publisher : Pearson Education
ISBN 13 : 0132440539
Total Pages : 875 pages
Book Rating : 4.1/5 (324 download)

DOWNLOAD NOW!


Book Synopsis System Identification by : Lennart Ljung

Download or read book System Identification written by Lennart Ljung and published by Pearson Education. This book was released on 1998-12-29 with total page 875 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field's leading text, now completely updated. Modeling dynamical systems — theory, methodology, and applications. Lennart Ljung's System Identification: Theory for the User is a complete, coherent description of the theory, methodology, and practice of System Identification. This completely revised Second Edition introduces subspace methods, methods that utilize frequency domain data, and general non-linear black box methods, including neural networks and neuro-fuzzy modeling. The book contains many new computer-based examples designed for Ljung's market-leading software, System Identification Toolbox for MATLAB. Ljung combines careful mathematics, a practical understanding of real-world applications, and extensive exercises. He introduces both black-box and tailor-made models of linear as well as non-linear systems, and he describes principles, properties, and algorithms for a variety of identification techniques: Nonparametric time-domain and frequency-domain methods. Parameter estimation methods in a general prediction error setting. Frequency domain data and frequency domain interpretations. Asymptotic analysis of parameter estimates. Linear regressions, iterative search methods, and other ways to compute estimates. Recursive (adaptive) estimation techniques. Ljung also presents detailed coverage of the key issues that can make or break system identification projects, such as defining objectives, designing experiments, controlling the bias distribution of transfer-function estimates, and carefully validating the resulting models. The first edition of System Identification has been the field's most widely cited reference for over a decade. This new edition will be the new text of choice for anyone concerned with system identification theory and practice.

System Identification

Download System Identification PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471660957
Total Pages : 644 pages
Book Rating : 4.4/5 (716 download)

DOWNLOAD NOW!


Book Synopsis System Identification by : Rik Pintelon

Download or read book System Identification written by Rik Pintelon and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.

Neural Systems for Control

Download Neural Systems for Control PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080537391
Total Pages : 375 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Neural Systems for Control by : Omid Omidvar

Download or read book Neural Systems for Control written by Omid Omidvar and published by Elsevier. This book was released on 1997-02-24 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis

Identification of Nonlinear Systems Using Neural Networks and Polynomial Models

Download Identification of Nonlinear Systems Using Neural Networks and Polynomial Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540231851
Total Pages : 220 pages
Book Rating : 4.2/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Identification of Nonlinear Systems Using Neural Networks and Polynomial Models by : Andrzej Janczak

Download or read book Identification of Nonlinear Systems Using Neural Networks and Polynomial Models written by Andrzej Janczak and published by Springer Science & Business Media. This book was released on 2004-11-18 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gives a comparative study of their gradient approximation accuracy, computational complexity, and convergence rates and furthermore presents some new and original methods concerning the model parameter adjusting with gradient-based techniques. "Identification of Nonlinear Systems Using Neural Networks and Polynomal Models" is useful for researchers, engineers and graduate students in nonlinear systems and neural network theory.

System Identification (SYSID '03)

Download System Identification (SYSID '03) PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 9780080437095
Total Pages : 2080 pages
Book Rating : 4.4/5 (37 download)

DOWNLOAD NOW!


Book Synopsis System Identification (SYSID '03) by : Paul Van Den Hof

Download or read book System Identification (SYSID '03) written by Paul Van Den Hof and published by Elsevier. This book was released on 2004-06-29 with total page 2080 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for control, experimental modelling in process control, vibration and modal analysis, model validation, monitoring and fault detection, signal processing and communication, parameter estimation and inverse modelling, statistical analysis and uncertainty bounding, adaptive control and data-based controller tuning, learning, data mining and Bayesian approaches, sequential Monte Carlo methods, including particle filtering, applications in process control systems, motion control systems, robotics, aerospace systems, bioengineering and medical systems, physical measurement systems, automotive systems, econometrics, transportation and communication systems *Provides the latest research on System Identification *Contains contributions written by experts in the field *Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.

Signal Analysis and Prediction

Download Signal Analysis and Prediction PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780817640422
Total Pages : 536 pages
Book Rating : 4.6/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Signal Analysis and Prediction by : Ales Prochazka

Download or read book Signal Analysis and Prediction written by Ales Prochazka and published by Springer Science & Business Media. This book was released on 1998-12-23 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods of signal analysis represent a broad research topic with applications in many disciplines, including engineering, technology, biomedicine, seismography, eco nometrics, and many others based upon the processing of observed variables. Even though these applications are widely different, the mathematical background be hind them is similar and includes the use of the discrete Fourier transform and z-transform for signal analysis, and both linear and non-linear methods for signal identification, modelling, prediction, segmentation, and classification. These meth ods are in many cases closely related to optimization problems, statistical methods, and artificial neural networks. This book incorporates a collection of research papers based upon selected contri butions presented at the First European Conference on Signal Analysis and Predic tion (ECSAP-97) in Prague, Czech Republic, held June 24-27, 1997 at the Strahov Monastery. Even though the Conference was intended as a European Conference, at first initiated by the European Association for Signal Processing (EURASIP), it was very gratifying that it also drew significant support from other important scientific societies, including the lEE, Signal Processing Society of IEEE, and the Acoustical Society of America. The organizing committee was pleased that the re sponse from the academic community to participate at this Conference was very large; 128 summaries written by 242 authors from 36 countries were received. In addition, the Conference qualified under the Continuing Professional Development Scheme to provide PD units for participants and contributors.