Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Contributions To The Design And Analysis Of Quantitative Trait Loci Experiments
Download Contributions To The Design And Analysis Of Quantitative Trait Loci Experiments full books in PDF, epub, and Kindle. Read online Contributions To The Design And Analysis Of Quantitative Trait Loci Experiments ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Contributions to the Design and Analysis of Quantitative Trait Loci Experiments by : Chunfang Jin
Download or read book Contributions to the Design and Analysis of Quantitative Trait Loci Experiments written by Chunfang Jin and published by . This book was released on 2004 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Evolution and Selection of Quantitative Traits by : Bruce Walsh
Download or read book Evolution and Selection of Quantitative Traits written by Bruce Walsh and published by Oxford University Press. This book was released on 2018-06-21 with total page 1504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative traits-be they morphological or physiological characters, aspects of behavior, or genome-level features such as the amount of RNA or protein expression for a specific gene-usually show considerable variation within and among populations. Quantitative genetics, also referred to as the genetics of complex traits, is the study of such characters and is based on mathematical models of evolution in which many genes influence the trait and in which non-genetic factors may also be important. Evolution and Selection of Quantitative Traits presents a holistic treatment of the subject, showing the interplay between theory and data with extensive discussions on statistical issues relating to the estimation of the biologically relevant parameters for these models. Quantitative genetics is viewed as the bridge between complex mathematical models of trait evolution and real-world data, and the authors have clearly framed their treatment as such. This is the second volume in a planned trilogy that summarizes the modern field of quantitative genetics, informed by empirical observations from wide-ranging fields (agriculture, evolution, ecology, and human biology) as well as population genetics, statistical theory, mathematical modeling, genetics, and genomics. Whilst volume 1 (1998) dealt with the genetics of such traits, the main focus of volume 2 is on their evolution, with a special emphasis on detecting selection (ranging from the use of genomic and historical data through to ecological field data) and examining its consequences.
Book Synopsis Genetics and Analysis of Quantitative Traits by : Michael Lynch
Download or read book Genetics and Analysis of Quantitative Traits written by Michael Lynch and published by Sinauer Associates Incorporated. This book was released on 1998-01 with total page 980 pages. Available in PDF, EPUB and Kindle. Book excerpt: Professors Lynch and Walsh bring together the diverse array of theoretical and empirical applications of quantitative genetics in a work that is comprehensive and accessible to anyone with a rudimentary understanding of statistics and genetics.
Book Synopsis Quantitative Trait Loci by : Nicola J. Camp
Download or read book Quantitative Trait Loci written by Nicola J. Camp and published by Springer Science & Business Media. This book was released on 2008-02-03 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Quantitative Trait Loci: Methods and Protocols, a panel of highly experienced statistical geneticists demonstrate in a step-by-step fashion how to successfully analyze quantitative trait data using a variety of methods and software for the detection and fine mapping of quantitative trait loci (QTL). Writing for the nonmathematician, these experts guide the investigator from the design stage of a project onwards, providing detailed explanations of how best to proceed with each specific analysis, to find and use appropriate software, and to interpret results. Worked examples, citations to key papers, and variations in method ease the way to understanding and successful studies. Among the cutting-edge techniques presented are QTDT methods, variance components methods, and the Markov Chain Monte Carlo method for joint linkage and segregation analysis.
Book Synopsis A Guide to QTL Mapping with R/qtl by : Karl W. Broman
Download or read book A Guide to QTL Mapping with R/qtl written by Karl W. Broman and published by Springer. This book was released on 2011-12-02 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive discussion of QTL mapping concepts and theory Detailed instructions on the use of the R/qtl software, the most featured and flexible software for QTL mapping Two case studies illustrate QTL analysis in its entirety
Book Synopsis Handbook of Statistical Genetics by : David J. Balding
Download or read book Handbook of Statistical Genetics written by David J. Balding and published by John Wiley & Sons. This book was released on 2008-06-10 with total page 1616 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook for Statistical Genetics is widely regarded as the reference work in the field. However, the field has developed considerably over the past three years. In particular the modeling of genetic networks has advanced considerably via the evolution of microarray analysis. As a consequence the 3rd edition of the handbook contains a much expanded section on Network Modeling, including 5 new chapters covering metabolic networks, graphical modeling and inference and simulation of pedigrees and genealogies. Other chapters new to the 3rd edition include Human Population Genetics, Genome-wide Association Studies, Family-based Association Studies, Pharmacogenetics, Epigenetics, Ethic and Insurance. As with the second Edition, the Handbook includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between the chapters, tying the different areas together. With heavy use of up-to-date examples, real-life case studies and references to web-based resources, this continues to be must-have reference in a vital area of research. Edited by the leading international authorities in the field. David Balding - Department of Epidemiology & Public Health, Imperial College An advisor for our Probability & Statistics series, Professor Balding is also a previous Wiley author, having written Weight-of-Evidence for Forensic DNA Profiles, as well as having edited the two previous editions of HSG. With over 20 years teaching experience, he’s also had dozens of articles published in numerous international journals. Martin Bishop – Head of the Bioinformatics Division at the HGMP Resource Centre As well as the first two editions of HSG, Dr Bishop has edited a number of introductory books on the application of informatics to molecular biology and genetics. He is the Associate Editor of the journal Bioinformatics and Managing Editor of Briefings in Bioinformatics. Chris Cannings – Division of Genomic Medicine, University of Sheffield With over 40 years teaching in the area, Professor Cannings has published over 100 papers and is on the editorial board of many related journals. Co-editor of the two previous editions of HSG, he also authored a book on this topic.
Book Synopsis Quantitative Trait Loci Analysis in Animals by : Joel Ira Weller
Download or read book Quantitative Trait Loci Analysis in Animals written by Joel Ira Weller and published by CABI. This book was released on 2009 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative Trait Loci (QTL) is a topic of major agricultural significance for efficient livestock production. This book covers various statistical methods that have been used or proposed for detection and analysis of QTL and marker-and gene-assisted selection in animal genetics and breeding.
Book Synopsis Genetic Dissection of Complex Traits by : D.C. Rao
Download or read book Genetic Dissection of Complex Traits written by D.C. Rao and published by Academic Press. This book was released on 2008-04-23 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of genetics is rapidly evolving and new medical breakthroughs are occuring as a result of advances in knowledge of genetics. This series continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines. Five sections on the latest advances in complex traits Methods for testing with ethical, legal, and social implications Hot topics include discussions on systems biology approach to drug discovery; using comparative genomics for detecting human disease genes; computationally intensive challenges, and more
Book Synopsis Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research by : Robert T. Gerlai
Download or read book Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research written by Robert T. Gerlai and published by Academic Press. This book was released on 2018-04-24 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior, a critical piece of the puzzle for clinicians, scientists, course instructors and advanced undergraduate and graduate students. Chapters examine neuroinformatics, genetic and neurobehavioral databases and data mining, also providing an analysis of natural genetic variation and principles and applications of forward (mutagenesis) and reverse genetics (gene targeting). In addition, the book discusses gene expression and its role in brain function and behavior, along with ethical issues in the use of animals in genetics testing. Written and edited by leading international experts, this book provides a clear presentation of the frontiers of basic research as well as translationally relevant techniques that are used by neurobehavioral geneticists. - Focuses on new techniques, including electrocorticography, functional mapping, stereo EEG, motor evoked potentials, optical coherence tomography, magnetoencephalography, laser evoked potentials, transmagnetic stimulation, and motor evoked potentials - Presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior - Written and edited by leading international experts
Book Synopsis Statistical Genetics of Quantitative Traits by : Rongling Wu
Download or read book Statistical Genetics of Quantitative Traits written by Rongling Wu and published by Springer Science & Business Media. This book was released on 2007-07-17 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the basic concepts and methods that are useful in the statistical analysis and modeling of the DNA-based marker and phenotypic data that arise in agriculture, forestry, experimental biology, and other fields. It concentrates on the linkage analysis of markers, map construction and quantitative trait locus (QTL) mapping, and assumes a background in regression analysis and maximum likelihood approaches. The strength of this book lies in the construction of general models and algorithms for linkage analysis, as well as in QTL mapping in any kind of crossed pedigrees initiated with inbred lines of crops.
Book Synopsis Genomics in Aquaculture by : Simon A MacKenzie
Download or read book Genomics in Aquaculture written by Simon A MacKenzie and published by Academic Press. This book was released on 2016-07-29 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genomics in Aquaculture is a concise, must-have reference that describes current advances within the field of genomics and their applications to aquaculture. Written in an accessible manner for anyone—non-specialists to experts alike—this book provides in-depth coverage of genomics spanning from genome sequencing, to transcriptomics and proteomics. It provides, for ease of learning, examples from key species most relevant to current intensive aquaculture practice. Its coverage of minority species that have a specific biological interest (e.g., Pleuronectiformes) makes this book useful for countries that are developing such species. It is a robust, practical resource that covers foundational, functional, and applied aspects of genomics in aquaculture, presenting the most current information in a field of research that is rapidly growing. - Provides the latest scientific methods and technologies to maximize efficiencies for healthy fish production, with summary tables for quick reference - Offers an extended glossary of technical and methodological terms to help readers better understand key biological concepts - Describes state-of-the-art technologies, such as transcriptomics and epigenomics, currently under development for future perspective of the field - Covers minority species that have a specific biological interest (e.g., Pleuronectiformes), making the book useful to countries developing such species
Book Synopsis The Maize Genome by : Jeffrey Bennetzen
Download or read book The Maize Genome written by Jeffrey Bennetzen and published by Springer. This book was released on 2018-11-24 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses advances in our understanding of the structure and function of the maize genome since publication of the original B73 reference genome in 2009, and the progress in translating this knowledge into basic biology and trait improvement. Maize is an extremely important crop, providing a large proportion of the world’s human caloric intake and animal feed, and serving as a model species for basic and applied research. The exceptionally high level of genetic diversity within maize presents opportunities and challenges in all aspects of maize genetics, from sequencing and genotyping to linking genotypes to phenotypes. Topics covered in this timely book range from (i) genome sequencing and genotyping techniques, (ii) genome features such as centromeres and epigenetic regulation, (iii) tools and resources available for trait genomics, to (iv) applications of allele mining and genomics-assisted breeding. This book is a valuable resource for researchers and students interested in maize genetics and genomics.
Book Synopsis Genetics and Genomics of Rosaceae by : Kevin M. Folta
Download or read book Genetics and Genomics of Rosaceae written by Kevin M. Folta and published by Springer Science & Business Media. This book was released on 2009-05-28 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on Rosaceae genomics. It covers progress in recent genomic research among the Rosaceae, grounding this firmly in the historical context of genetic studies and in the application of genomics technologies for crop development.
Book Synopsis Genetics and Genomics of the Triticeae by : Catherine Feuillet
Download or read book Genetics and Genomics of the Triticeae written by Catherine Feuillet and published by Springer Science & Business Media. This book was released on 2009-06-10 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sequencing of the model plant genomes such as those of A. thaliana and rice has revolutionized our understanding of plant biology but it has yet to translate into the improvement of major crop species such as maize, wheat, or barley. Moreover, the comparative genomic studies in cereals that have been performed in the past decade have revealed the limits of conservation between rice and the other cereal genomes. This has necessitated the development of genomic resources and programs for maize, sorghum, wheat, and barley to serve as the foundation for future genome sequencing and the acceleration of genomic based improvement of these critically important crops. Cereals constitute over 50% of total crop production worldwide (http://www.fao.org/) and cereal seeds are one of the most important renewable resources for food, feed, and industrial raw materials. Crop species of the Triticeae tribe that comprise wheat, barley, and rye are essential components of human and domestic animal nutrition. With 17% of all crop area, wheat is the staple food for 40% of the world’s population, while barley ranks fifth in the world production. Their domestication in the Fertile Crescent 10,000 years ago ushered in the beginning of agriculture and signified an important breakthrough in the advancement of civilization. Rye is second after wheat among grains most commonly used in the production of bread and is also very important for mixed animal feeds. It can be cultivated in poor soils and climates that are generally not suitable for other cereals. Extensive genetics and cytogenetics studies performed in the Triticeae species over the last 50 years have led to the characterization of their chromosomal composition and origins and have supported intensive work to create new genetic resources. Cytogenetic studies in wheat have allowed the identification and characterization of the different homoeologous genomes and have demonstrated the utility of studying wheat genome evolution as a model for the analysis of polyploidization, a major force in the evolution of the eukaryotic genomes. Barley with its diploid genome shows high collinearity with the other Triticeae genomes and therefore serves as a good template for supporting genomic analyses in the wheat and rye genomes. The knowledge gained from genetic studies in the Triticeae has also been used to produce Triticale, the first human made hybrid crop that results from a cross between wheat and rye and combines the nutrition quality and productivity of wheat with the ruggedness of rye. Despite the economic importance of the Triticeae species and the need for accelerated crop improvement based on genomics studies, the size (1.7 Gb for the bread wheat genome, i.e., 5x the human genome and 40 times the rice genome), high repeat content (>80%), and complexity (polyploidy in wheat) of their genomes often have been considered too challenging for efficient molecular analysis and genetic improvement in these species. Consequently, Triticeae genomics has lagged behind the genomic advances of other cereal crops for many years. Recently, however, the situation has changed dramatically and robust genomic programs can be established in the Triticeae as a result of the convergence of several technology developments that have led to new, more efficient scientific capabilities and resources such as whole-genome and chromosome-specific BAC libraries, extensive EST collections, transformation systems, wild germplasm and mutant collections, as well as DNA chips. Currently, the Triticeae genomics "toolbox" is comprised of: - 9 publicly available BAC libraries from diploid (5), tetraploid (1) and hexaploid (3) wheat; 3 publicly available BAC libraries from barley and one BAC library from rye; - 3 wheat chromosome specific BAC libraries; - DNA chips including commercially available first generation chips from AFFYMETRIX containing 55’000 wheat and 22,000 barley genes; - A large number of wheat and barley genetic maps that are saturated by a significant number of markers; - The largest plant EST collection with 870’000 wheat ESTs, 440’000 barley ESTs and about 10’000 rye ESTs; - Established protocols for stable transformation by biolistic and agrobacterium as well as a transient expression system using VIGS in wheat and barley; and - Large collections of well characterized cultivated and wild genetic resources. International consortia, such as the International Triticeae Mapping Initiative (ITMI), have advanced synergies in the Triticeae genetics community in the development of additional mapping populations and markers that have led to a dramatic improvement in the resolution of the genetic maps and the amount of molecular markers in the three species resulting in the accelerated utilization of molecular markers in selection programs. Together, with the development of the genomic resources, the isolation of the first genes of agronomic interest by map-based cloning has been enabled and has proven the feasibility of forging the link between genotype and phenotype in the Triticeae species. Moreover, the first analyses of BAC sequences from wheat and barley have allowed preliminary characterizations of their genome organization and composition as well as the first inter- and intra-specific comparative genomic studies. These later have revealed important evolutionary mechanisms (e.g. unequal crossing over, illegitimate recombination) that have shaped the wheat and barley genomes during their evolution. These breakthroughs have demonstrated the feasibility of developing efficient genomic studies in the Triticeae and have led to the recent establishment of the International Wheat Genome Sequencing Consortium (IWGSC) (http//:www.wheatgenome.org) and the International Barley Sequencing Consortium (www.isbc.org) that aim to sequence, respectively, the hexaploid wheat and barley genomes to accelerate gene discovery and crop improvement in the next decade. Large projects aiming at the establishment of the physical maps as well as a better characterization of their composition and organization through large scale random sequencing projects have been initiated already. Concurrently, a number of projects have been launched to develop high throughput functional genomics in wheat and barley. Transcriptomics, proteomics, and metabolomics analyses of traits of agronomic importance, such as quality, disease resistance, drought, and salt tolerance, are underway in both species. Combined with the development of physical maps, efficient gene isolation will be enabled and improved sequencing technologies and reduced sequencing costs will permit ultimately genome sequencing and access to the entire wheat and barley gene regulatory elements repertoire. Because rye is closely related to wheat and barley in Triticeae evolution, the latest developments in wheat and barley genomics will be of great use for developing rye genomics and for providing tools for rye improvement. Finally, a new model for temperate grasses has emerged in the past year with the development of the genetics and genomics (including a 8x whole genome shotgun sequencing project) of Brachypodium, a member of the Poeae family that is more closely related to the Triticeae than rice and can provide valuable information for supporting Triticeae genomics in the near future. These recent breakthroughs have yet to be reviewed in a single source of literature and current handbooks on wheat, barley, or rye are dedicated mainly to progress in genetics. In "Genetics and Genomics of the Triticeae", we will aim to comprehensively review the recent progress in the development of structural and functional genomics tools in the Triticeae species and review the understanding of wheat, barley, and rye biology that has resulted from these new resources as well as to illuminate how this new found knowledge can be applied for the improvement of these essential species. The book will be the seventh volume in the ambitious series of books, Plant Genetics and Genomics (Richard A. Jorgensen, series editor) that will attempt to bring the field up-to-date on the genetics and genomics of important crop plants and genetic models. It is our hope that the publication will be a useful and timely tool for researchers and students alike working with the Triticeae.
Book Synopsis An Introduction to Genetic Statistics by : Oscar Kempthorne
Download or read book An Introduction to Genetic Statistics written by Oscar Kempthorne and published by Wiley-Blackwell. This book was released on 1957 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary probability; Random mating populations; Elementary selection problems; The elementary stochastic theory of genetic populations; Inbreeding; The generation matrix theory of inbreeding; Tests of genetic hypotheses; The estimation of genetic parameters; The planning of experiments; Statistical problems in human genetics; The analysis of variation; The partition of variance; Multiple regression, correlation and adjustment of data, and path analysis; Inheritance of quantitative characters in a random mating population; Non-random mating deploid populations with one locus segregating; Correlation between relatives under inbreeding with one locus segregating; One-locus polyploid populations; Diploid populations with arbitrary number of segregating loci and arbitrary epistacy; Inbreeding with a arbitrary diploid population; Population derived from inbred lines; Infinitesimal equilibrium theory of assortative mating; Selection for quantitative characters.
Book Synopsis Quantitative Genetics in Maize Breeding by : Arnel R. Hallauer
Download or read book Quantitative Genetics in Maize Breeding written by Arnel R. Hallauer and published by Springer Science & Business Media. This book was released on 2010-09-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm
Book Synopsis Adaptation and Fitness in Animal Populations by : Julius van der Werf
Download or read book Adaptation and Fitness in Animal Populations written by Julius van der Werf and published by Springer Science & Business Media. This book was released on 2008-10-17 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fitness and adaptation are fundamental characteristics of plant and animal species, enabling them to survive in their environment and to adapt to the inevitable changes in this environment. This is true for both the genetic resources of natural ecosystems as well as those used in agricultural production. Extensive genetic variation exists between varieties/breeds in a species and amongst individuals within breeds. This variation has developed over very long periods of time. A major ongoing challenge is how to best utilize this variation to meet short-term demands whilst also conserving it for longer-term possible use. Many animal breeding programs have led to increased performance for production traits but this has often been accompanied by reduced fitness. In addition, the global use of genetic resources prompts the question whether introduced genotypes are adapted to local production systems. Understanding the genetic nature of fitness and adaptation will enable us to better manage genetic resources allowing us to make efficient and sustainable decisions for the improvement or breeding of these resources. This book had an ambitious goal in bringing together a sample of the world’s leading scientists in animal breeding and evolutionary genetics to exchange knowledge to advance our understanding of these vital issues.